These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25701278)

  • 1. Not all attention orienting is created equal: recognition memory is enhanced when attention orienting involves distractor suppression.
    Markant J; Worden MS; Amso D
    Neurobiol Learn Mem; 2015 Apr; 120():28-40. PubMed ID: 25701278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting.
    Serences JT; Yantis S; Culberson A; Awh E
    J Neurophysiol; 2004 Dec; 92(6):3538-45. PubMed ID: 15254075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveling the playing field: attention mitigates the effects of intelligence on memory.
    Markant J; Amso D
    Cognition; 2014 May; 131(2):195-204. PubMed ID: 24549142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective memories: infants' encoding is enhanced in selection via suppression.
    Markant J; Amso D
    Dev Sci; 2013 Nov; 16(6):926-40. PubMed ID: 24118717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective attention neutralizes the adverse effects of low socioeconomic status on memory in 9-month-old infants.
    Markant J; Ackerman LK; Nussenbaum K; Amso D
    Dev Cogn Neurosci; 2016 Apr; 18():26-33. PubMed ID: 26597046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural systems for orienting attention to the location of threat signals: an event-related fMRI study.
    Pourtois G; Schwartz S; Seghier ML; Lazeyras F; Vuilleumier P
    Neuroimage; 2006 Jun; 31(2):920-33. PubMed ID: 16487729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Development of Selective Attention Orienting is an Agent of Change in Learning and Memory Efficacy.
    Markant J; Amso D
    Infancy; 2016 Mar; 21(2):154-176. PubMed ID: 26957950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time course of inhibition of return in a spatial cueing paradigm with distractors.
    Eng V; Lim A; Janssen SMJ; Satel J
    Acta Psychol (Amst); 2018 Feb; 183():51-57. PubMed ID: 29328938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates of spatial and non-spatial inhibition of return (IOR) in attentional orienting.
    Zhou X; Chen Q
    Neuropsychologia; 2008 Sep; 46(11):2766-75. PubMed ID: 18597795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of saccadic eye movements to locations in spatial working memory.
    Belopolsky AV; Theeuwes J
    Atten Percept Psychophys; 2009 Apr; 71(3):620-31. PubMed ID: 19304651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-equivalent top-down modulation during cross-modal selective attention.
    Guerreiro MJ; Anguera JA; Mishra J; Van Gerven PW; Gazzaley A
    J Cogn Neurosci; 2014 Dec; 26(12):2827-39. PubMed ID: 25010198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical dynamics of contextually cued attentive visual learning and search: spatial and object evidence accumulation.
    Huang TR; Grossberg S
    Psychol Rev; 2010 Oct; 117(4):1080-112. PubMed ID: 21038974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement from targets and suppression from cues in fast task-irrelevant perceptual learning.
    Leclercq V; Seitz AR
    Acta Psychol (Amst); 2012 Sep; 141(1):31-8. PubMed ID: 22842471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye tracking infants: investigating the role of attention during learning on recognition memory.
    Taylor G; Herbert JS
    Scand J Psychol; 2013 Feb; 54(1):14-9. PubMed ID: 23198776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communicative Signals Promote Object Recognition Memory and Modulate the Right Posterior STS.
    Redcay E; Ludlum RS; Velnoskey KR; Kanwal S
    J Cogn Neurosci; 2016 Jan; 28(1):8-19. PubMed ID: 26351992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal neuroimaging evidence linking memory and attention systems during visual search cued by context.
    Kasper RW; Grafton ST; Eckstein MP; Giesbrecht B
    Ann N Y Acad Sci; 2015 Mar; 1339():176-89. PubMed ID: 25586959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural structures involved in visual search guidance by reward-enhanced contextual cueing of the target location.
    Pollmann S; Eštočinová J; Sommer S; Chelazzi L; Zinke W
    Neuroimage; 2016 Jan; 124(Pt A):887-897. PubMed ID: 26427645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orienting attention based on long-term memory experience.
    Summerfield JJ; Lepsien J; Gitelman DR; Mesulam MM; Nobre AC
    Neuron; 2006 Mar; 49(6):905-16. PubMed ID: 16543137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.