These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 2570141)
21. Beta-adrenergic regulation of cyclic GMP in rat pinealocytes. Sugden D Biochem Biophys Res Commun; 1990 Mar; 167(2):835-41. PubMed ID: 1969732 [TBL] [Abstract][Full Text] [Related]
22. Altered melatonin production in TGR(mREN2)27 rats: on the regulation by adrenergic agonists, antagonists and angiotensin II in cultured pinealocytes. Enzminger H; Witte K; Lemmer B J Pineal Res; 2001 Oct; 31(3):256-63. PubMed ID: 11589761 [TBL] [Abstract][Full Text] [Related]
23. Down-regulation of pinealocyte protein kinase C: effect on alpha 1-adrenergic potentiation of beta-adrenoceptor stimulation of cyclic AMP accumulation and induction of serotonin N-acetyltransferase activity. Sugden D J Neurochem; 1991 Jul; 57(1):216-21. PubMed ID: 1675661 [TBL] [Abstract][Full Text] [Related]
24. Norepinephrine stimulation of pineal cyclic AMP response element-binding protein phosphorylation: primary role of a beta-adrenergic receptor/cyclic AMP mechanism. Roseboom PH; Klein DC Mol Pharmacol; 1995 Mar; 47(3):439-49. PubMed ID: 7700241 [TBL] [Abstract][Full Text] [Related]
25. Regulation of pineal alpha1B-adrenergic receptor mRNA: day/night rhythm and beta-adrenergic receptor/cyclic AMP control. Coon SL; McCune SK; Sugden D; Klein DC Mol Pharmacol; 1997 Apr; 51(4):551-7. PubMed ID: 9106618 [TBL] [Abstract][Full Text] [Related]
26. Histaminergic and noradrenergic control of cyclic AMP formation in the pineal gland and cerebral cortex of three avian species: cock, duck, and goose. Nowak JZ; Woldan-Tambor A; Zawilska JB Pol J Pharmacol; 1998; 50(1):55-60. PubMed ID: 9662739 [TBL] [Abstract][Full Text] [Related]
27. Noradrenaline modulates oyster hemocyte phagocytosis via a beta-adrenergic receptor-cAMP signaling pathway. Lacoste A; Malham SK; Cueff A; Poulet SA Gen Comp Endocrinol; 2001 Jun; 122(3):252-9. PubMed ID: 11356037 [TBL] [Abstract][Full Text] [Related]
28. Effects of protein kinase inhibitor (1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7) on protein kinase C activity and adrenergic stimulation of cAMP and cGMP in rat pinealocytes. Ho AK; Chik CL; Klein DC Biochem Pharmacol; 1988 Mar; 37(6):1015-20. PubMed ID: 2833269 [TBL] [Abstract][Full Text] [Related]
29. Role of postsynaptic alpha-adrenergic receptors in the beta-adrenergic stimulation of melatonin production in the Syrian hamster pineal gland in organ culture. Santana C; Guerrero JM; Reiter RJ; Menendez-Pelaez A J Pineal Res; 1989; 7(1):13-22. PubMed ID: 2542520 [TBL] [Abstract][Full Text] [Related]
30. Regulation of phospholamban and troponin-I phosphorylation in the intact rat cardiomyocytes by adrenergic and cholinergic stimuli: roles of cyclic nucleotides, calcium, protein kinases and phosphatases and depolarization. Sulakhe PV; Vo XT Mol Cell Biochem; 1995; 149-150():103-26. PubMed ID: 8569720 [TBL] [Abstract][Full Text] [Related]
31. The enhancement and the inhibition of noradrenaline-induced cyclic AMP accumulation in rat brain by stimulation of metabotropic glutamate receptors. Pilc A; Legutko B; Czyrak A Prog Neuropsychopharmacol Biol Psychiatry; 1996 May; 20(4):673-90. PubMed ID: 8843491 [TBL] [Abstract][Full Text] [Related]
32. Specificity of the beta 2-adrenergic receptor stimulating cyclic AMP accumulation in the intermediate lobe of rat pituitary gland. Meunier H; Labrie F Eur J Pharmacol; 1982 Jul; 81(3):411-20. PubMed ID: 6288411 [TBL] [Abstract][Full Text] [Related]
33. Effect of monoamine receptor agonists and antagonists on cyclic AMP accumulation in human cerebral cortex slices. Tsang D; Lal S Can J Physiol Pharmacol; 1977 Dec; 55(6):1263-9. PubMed ID: 23211 [TBL] [Abstract][Full Text] [Related]
34. Photoneural regulation of the mammalian pineal gland. Klein DC Ciba Found Symp; 1985; 117():38-56. PubMed ID: 3015512 [TBL] [Abstract][Full Text] [Related]
35. Interaction between alpha- and beta-adrenoceptors in rat pineal adenosine cyclic 3',5'-monophosphate phosphodiesterase activation. Vacas MI; Keller Sarmiento MI; Cardinali DP J Neural Transm; 1985; 62(3-4):295-304. PubMed ID: 2993508 [TBL] [Abstract][Full Text] [Related]
36. Ovine pineal alpha 1-adrenoceptors: characterization and evidence for a functional role in the regulation of serum melatonin. Sugden D; Namboodiri MA; Klein DC; Pierce JE; Grady R; Mefford IN Endocrinology; 1985 May; 116(5):1960-7. PubMed ID: 2985366 [TBL] [Abstract][Full Text] [Related]
37. Comparison of the effects of beta-adrenergic agents on pineal serotonin N-acetyltransferase activity and melatonin content in two species of hamsters. Steinlechner S; King TS; Champney TH; Spanel-Borowski K; Reiter RJ J Pineal Res; 1984; 1(1):23-30. PubMed ID: 6152777 [TBL] [Abstract][Full Text] [Related]
38. Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Sugden D; Vanecek J; Klein DC; Thomas TP; Anderson WB Nature; 1985 Mar 28-Apr 3; 314(6009):359-61. PubMed ID: 2984573 [TBL] [Abstract][Full Text] [Related]
39. Neonatal rat pinealocytes: typical and atypical characteristics of [125I]iodohydroxybenzylpindolol binding and adenosine 3',5'-monophosphate accumulation. Auerbach DA; Klein DC; Woodard C; Aurbach GD Endocrinology; 1981 Feb; 108(2):559-67. PubMed ID: 6256156 [TBL] [Abstract][Full Text] [Related]
40. Synergistic action of postsynaptic alpha-adrenergic receptor stimulation on vasoactive intestinal polypeptide-induced increases in pineal N-acetyltransferase activity. Yuwiler A J Neurochem; 1987 Sep; 49(3):806-11. PubMed ID: 2886555 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]