BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25701569)

  • 1. CycleFreeFlux: efficient removal of thermodynamically infeasible loops from flux distributions.
    Desouki AA; Jarre F; Gelius-Dietrich G; Lercher MJ
    Bioinformatics; 2015 Jul; 31(13):2159-65. PubMed ID: 25701569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. tEFMA: computing thermodynamically feasible elementary flux modes in metabolic networks.
    Gerstl MP; Jungreuthmayer C; Zanghellini J
    Bioinformatics; 2015 Jul; 31(13):2232-4. PubMed ID: 25701571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resource allocation in metabolic networks: kinetic optimization and approximations by FBA.
    Müller S; Regensburger G; Steuer R
    Biochem Soc Trans; 2015 Dec; 43(6):1195-200. PubMed ID: 26614660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast thermodynamically constrained flux variability analysis.
    Müller AC; Bockmayr A
    Bioinformatics; 2013 Apr; 29(7):903-9. PubMed ID: 23390138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic flux configuration determination using information entropy.
    Rivas-Astroza M; Conejeros R
    PLoS One; 2020; 15(12):e0243067. PubMed ID: 33275628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.
    Kiparissides A; Hatzimanikatis V
    Metab Eng; 2017 Jan; 39():117-127. PubMed ID: 27845184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks.
    Hoppe A; Hoffmann S; Holzhütter HG
    BMC Syst Biol; 2007 Jun; 1():23. PubMed ID: 17543097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Which sets of elementary flux modes form thermodynamically feasible flux distributions?
    Gerstl MP; Jungreuthmayer C; Müller S; Zanghellini J
    FEBS J; 2016 May; 283(9):1782-94. PubMed ID: 26940826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction lumping in metabolic networks for application with thermodynamic metabolic flux analysis.
    Seep L; Razaghi-Moghadam Z; Nikoloski Z
    Sci Rep; 2021 Apr; 11(1):8544. PubMed ID: 33879809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating Metabolic Fluxes Using a Maximum Network Flexibility Paradigm.
    Megchelenbrink W; Rossell S; Huynen MA; Notebaart RA; Marchiori E
    PLoS One; 2015; 10(10):e0139665. PubMed ID: 26457579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models.
    Saa PA; Nielsen LK
    Bioinformatics; 2016 Dec; 32(24):3807-3814. PubMed ID: 27559155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved algorithm for flux variability analysis.
    Kenefake D; Armingol E; Lewis NE; Pistikopoulos EN
    BMC Bioinformatics; 2022 Dec; 23(1):550. PubMed ID: 36536290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Software applications toward quantitative metabolic flux analysis and modeling.
    Dandekar T; Fieselmann A; Majeed S; Ahmed Z
    Brief Bioinform; 2014 Jan; 15(1):91-107. PubMed ID: 23142828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NExT: integration of thermodynamic constraints and metabolomics data into a metabolic network.
    Martínez VS; Nielsen LK
    Methods Mol Biol; 2014; 1191():65-78. PubMed ID: 25178784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics-based metabolic flux analysis.
    Henry CS; Broadbelt LJ; Hatzimanikatis V
    Biophys J; 2007 Mar; 92(5):1792-805. PubMed ID: 17172310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting internal cell fluxes at sub-optimal growth.
    Schultz A; Qutub AA
    BMC Syst Biol; 2015 Apr; 9():18. PubMed ID: 25890056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CBFA: phenotype prediction integrating metabolic models with constraints derived from experimental data.
    Carreira R; Evangelista P; Maia P; Vilaça P; Pont M; Tomb JF; Rocha I; Rocha M
    BMC Syst Biol; 2014 Dec; 8():123. PubMed ID: 25466481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico co-factor balance estimation using constraint-based modelling informs metabolic engineering in Escherichia coli.
    de Arroyo Garcia L; Jones PR
    PLoS Comput Biol; 2020 Aug; 16(8):e1008125. PubMed ID: 32776925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balancing biomass reaction stoichiometry and measured fluxes in flux balance analysis.
    von Kamp A; Klamt S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37758251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.