BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 25701571)

  • 1. tEFMA: computing thermodynamically feasible elementary flux modes in metabolic networks.
    Gerstl MP; Jungreuthmayer C; Zanghellini J
    Bioinformatics; 2015 Jul; 31(13):2232-4. PubMed ID: 25701571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomics integrated elementary flux mode analysis in large metabolic networks.
    Gerstl MP; Ruckerbauer DE; Mattanovich D; Jungreuthmayer C; Zanghellini J
    Sci Rep; 2015 Mar; 5():8930. PubMed ID: 25754258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing the shortest elementary flux modes in genome-scale metabolic networks.
    de Figueiredo LF; Podhorski A; Rubio A; Kaleta C; Beasley JE; Schuster S; Planes FJ
    Bioinformatics; 2009 Dec; 25(23):3158-65. PubMed ID: 19793869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Which sets of elementary flux modes form thermodynamically feasible flux distributions?
    Gerstl MP; Jungreuthmayer C; Müller S; Zanghellini J
    FEBS J; 2016 May; 283(9):1782-94. PubMed ID: 26940826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How important is thermodynamics for identifying elementary flux modes?
    Peres S; Jolicœur M; Moulin C; Dague P; Schuster S
    PLoS One; 2017; 12(2):e0171440. PubMed ID: 28222104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct calculation of elementary flux modes satisfying several biological constraints in genome-scale metabolic networks.
    Pey J; Planes FJ
    Bioinformatics; 2014 Aug; 30(15):2197-203. PubMed ID: 24728852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating biological elementary flux modes that decompose a flux distribution by the minimal branching property.
    Chan SH; Solem C; Jensen PR; Ji P
    Bioinformatics; 2014 Nov; 30(22):3232-9. PubMed ID: 25100687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CycleFreeFlux: efficient removal of thermodynamically infeasible loops from flux distributions.
    Desouki AA; Jarre F; Gelius-Dietrich G; Lercher MJ
    Bioinformatics; 2015 Jul; 31(13):2159-65. PubMed ID: 25701569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct calculation of minimal cut sets involving a specific reaction knock-out.
    Tobalina L; Pey J; Planes FJ
    Bioinformatics; 2016 Jul; 32(13):2001-7. PubMed ID: 27153694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A depth-first search algorithm to compute elementary flux modes by linear programming.
    Quek LE; Nielsen LK
    BMC Syst Biol; 2014 Jul; 8():94. PubMed ID: 25074068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting the extraction of elementary flux modes in genome-scale metabolic networks using the linear programming approach.
    Guil F; Hidalgo JF; García JM
    Bioinformatics; 2020 Aug; 36(14):4163-4170. PubMed ID: 32348455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. regEfmtool: speeding up elementary flux mode calculation using transcriptional regulatory rules in the form of three-state logic.
    Jungreuthmayer C; Ruckerbauer DE; Zanghellini J
    Biosystems; 2013 Jul; 113(1):37-9. PubMed ID: 23664840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NExT: integration of thermodynamic constraints and metabolomics data into a metabolic network.
    Martínez VS; Nielsen LK
    Methods Mol Biol; 2014; 1191():65-78. PubMed ID: 25178784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On dynamically generating relevant elementary flux modes in a metabolic network using optimization.
    Oddsdóttir HÆ; Hagrot E; Chotteau V; Forsgren A
    J Math Biol; 2015 Oct; 71(4):903-20. PubMed ID: 25323319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flux tope analysis: studying the coordination of reaction directions in metabolic networks.
    Gerstl MP; Müller S; Regensburger G; Zanghellini J
    Bioinformatics; 2019 Jan; 35(2):266-273. PubMed ID: 30649351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TreeEFM: calculating elementary flux modes using linear optimization in a tree-based algorithm.
    Pey J; Villar JA; Tobalina L; Rezola A; García JM; Beasley JE; Planes FJ
    Bioinformatics; 2015 Mar; 31(6):897-904. PubMed ID: 25380956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A graph-based approach to analyze flux-balanced pathways in metabolic networks.
    Arabzadeh M; Saheb Zamani M; Sedighi M; Marashi SA
    Biosystems; 2018 Mar; 165():40-51. PubMed ID: 29337084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do elementary flux modes combine linearly at the "atomic" level?: integrating tracer-based metabolomics data and elementary flux modes.
    Pey J; Theodoropoulos C; Rezola A; Rubio A; Cascante M; Planes FJ
    Biosystems; 2011 Aug; 105(2):140-6. PubMed ID: 21536097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting structural invariants in biological reaction networks.
    Behre J; de Figueiredo LF; Schuster S; Kaleta C
    Methods Mol Biol; 2012; 804():377-407. PubMed ID: 22144164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding MEMo: minimum sets of elementary flux modes.
    Röhl A; Bockmayr A
    J Math Biol; 2019 Oct; 79(5):1749-1777. PubMed ID: 31388689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.