BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25701631)

  • 1. Anti-angiogenic drug delivery from hydrophilic resorbable embolization microspheres: an in vitro study with sunitinib and bevacizumab.
    Bédouet L; Verret V; Louguet S; Servais E; Pascale F; Beilvert A; Baylatry MT; Labarre D; Moine L; Laurent A
    Int J Pharm; 2015 Apr; 484(1-2):218-27. PubMed ID: 25701631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-eluting beads loaded with antiangiogenic agents for chemoembolization: in vitro sunitinib loading and release and in vivo pharmacokinetics in an animal model.
    Fuchs K; Bize PE; Dormond O; Denys A; Doelker E; Borchard G; Jordan O
    J Vasc Interv Radiol; 2014 Mar; 25(3):379-87, 387.e1-2. PubMed ID: 24468044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro evaluation of sunitinib loaded bioresorbable microspheres for potential application in arterial chemoembolization.
    Weng L; Akurati S; Donelson RB; Rostamzadeh P; Golzarian J
    Colloids Surf B Biointerfaces; 2017 Nov; 159():705-711. PubMed ID: 28881297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable delivery of niflumic acid from resorbable embolization microspheres for uterine fibroid embolization.
    Bédouet L; Moine L; Servais E; Beilvert A; Labarre D; Laurent A
    Int J Pharm; 2016 Sep; 511(1):253-261. PubMed ID: 27374196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embolization biomaterial reinforced with nanotechnology for an in-situ release of anti-angiogenic agent in the treatment of hyper-vascularized tumors and arteriovenous malformations.
    Jubeli E; Yagoubi N; Pascale F; Bédouet L; Slimani K; Labarre D; Saint-Maurice JP; Laurent A; Moine L
    Eur J Pharm Biopharm; 2015 Oct; 96():396-408. PubMed ID: 26386355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sunitinib microspheres based on [PDLLA-PEG-PDLLA]-b-PLLA multi-block copolymers for ocular drug delivery.
    Ramazani F; Hiemstra C; Steendam R; Kazazi-Hyseni F; Van Nostrum CF; Storm G; Kiessling F; Lammers T; Hennink WE; Kok RJ
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt B):368-77. PubMed ID: 25701807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro biologic efficacy of sunitinib drug-eluting beads on human colorectal and hepatocellular carcinoma-A pilot study.
    Lahti S; Ludwig JM; Xing M; Sun L; Zeng D; Kim HS
    PLoS One; 2017; 12(4):e0174539. PubMed ID: 28384190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antitumor effect of vascular endothelial growth factor inhibitor sunitinib in preclinical models of hepatocellular carcinoma.
    Bagi CM; Gebhard DF; Andresen CJ
    Eur J Gastroenterol Hepatol; 2012 May; 24(5):563-74. PubMed ID: 22314934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of drug distribution in the rabbit liver tumor model by complementary fluorescence and mass spectrometry imaging.
    Fuchs K; Kiss A; Bize PE; Duran R; Denys A; Hopfgartner G; Borchard G; Jordan O
    J Control Release; 2018 Jan; 269():128-135. PubMed ID: 29101054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sunitinib-eluting beads for chemoembolization: methods for in vitro evaluation of drug release.
    Fuchs K; Bize PE; Denys A; Borchard G; Jordan O
    Int J Pharm; 2015 Mar; 482(1-2):68-74. PubMed ID: 25448554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo evaluation of drug-eluting microspheres designed for transarterial chemoembolization therapy.
    Wang Y; Molin DG; Sevrin C; Grandfils C; van den Akker NM; Gagliardi M; Knetsch ML; Delhaas T; Koole LH
    Int J Pharm; 2016 Apr; 503(1-2):150-62. PubMed ID: 26965198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bridging Sunitinib Exposure to Time-to-Tumor Progression in Hepatocellular Carcinoma Patients With Mathematical Modeling of an Angiogenic Biomarker.
    Ait-Oudhia S; Mager DE; Pokuri V; Tomaszewski G; Groman A; Zagst P; Fetterly G; Iyer R
    CPT Pharmacometrics Syst Pharmacol; 2016 Jun; 5(6):297-304. PubMed ID: 27300260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug-eluting embolic microspheres for local drug delivery - State of the art.
    Fuchs K; Duran R; Denys A; Bize PE; Borchard G; Jordan O
    J Control Release; 2017 Sep; 262():127-138. PubMed ID: 28710006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization.
    Lewis AL; Gonzalez MV; Lloyd AW; Hall B; Tang Y; Willis SL; Leppard SW; Wolfenden LC; Palmer RR; Stratford PW
    J Vasc Interv Radiol; 2006 Feb; 17(2 Pt 1):335-42. PubMed ID: 16517780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery.
    Chakravarty R; Goel S; Hong H; Chen F; Valdovinos HF; Hernandez R; Barnhart TE; Cai W
    Nanomedicine (Lond); 2015; 10(8):1233-46. PubMed ID: 25955122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics.
    Lovett ML; Wang X; Yucel T; York L; Keirstead M; Haggerty L; Kaplan DL
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt B):271-8. PubMed ID: 25592326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic antitumor activity of ixabepilone (BMS-247550) plus bevacizumab in multiple in vivo tumor models.
    Lee FY; Covello KL; Castaneda S; Hawken DR; Kan D; Lewin A; Wen ML; Ryseck RP; Fairchild CR; Fargnoli J; Kramer R
    Clin Cancer Res; 2008 Dec; 14(24):8123-31. PubMed ID: 19088027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of corneal neovascularization by topical bevacizumab (Anti-VEGF) and Sunitinib (Anti-VEGF and Anti-PDGF) in an animal model.
    Pérez-Santonja JJ; Campos-Mollo E; Lledó-Riquelme M; Javaloy J; Alió JL
    Am J Ophthalmol; 2010 Oct; 150(4):519-528.e1. PubMed ID: 20591397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arming embolic beads with anti-VEGF antibodies and controlling their release using LbL technology.
    Sakr OS; Berndt S; Carpentier G; Cuendet M; Jordan O; Borchard G
    J Control Release; 2016 Feb; 224():199-207. PubMed ID: 26780173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both sunitinib and sorafenib are effective treatments for pheochromocytoma in a xenograft model.
    Denorme M; Yon L; Roux C; Gonzalez BJ; Baudin E; Anouar Y; Dubessy C
    Cancer Lett; 2014 Oct; 352(2):236-44. PubMed ID: 25016061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.