These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 25701651)

  • 1. Extracellular regulation of metalloproteinases.
    Yamamoto K; Murphy G; Troeberg L
    Matrix Biol; 2015; 44-46():255-63. PubMed ID: 25701651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TIMP-3 facilitates binding of target metalloproteinases to the endocytic receptor LRP-1 and promotes scavenging of MMP-1.
    Carreca AP; Pravatà VM; Markham M; Bonelli S; Murphy G; Nagase H; Troeberg L; Scilabra SD
    Sci Rep; 2020 Jul; 10(1):12067. PubMed ID: 32694578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix metalloproteinases (MMPs) in health and disease: an overview.
    Malemud CJ
    Front Biosci; 2006 May; 11():1696-701. PubMed ID: 16368548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix Metalloproteinases: How Much Can They Do?
    Ågren MS; Auf dem Keller U
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32290531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration.
    Gaide Chevronnay HP; Selvais C; Emonard H; Galant C; Marbaix E; Henriet P
    Biochim Biophys Acta; 2012 Jan; 1824(1):146-56. PubMed ID: 21982799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting the interaction between tissue inhibitor of metalloproteinases-3 (TIMP-3) and low density lipoprotein receptor-related protein-1 (LRP-1): Development of a "TRAP" to increase levels of TIMP-3 in the tissue.
    Scilabra SD; Yamamoto K; Pigoni M; Sakamoto K; Müller SA; Papadopoulou A; Lichtenthaler SF; Troeberg L; Nagase H; Kadomatsu K
    Matrix Biol; 2017 May; 59():69-79. PubMed ID: 27476612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of the Metzincin Superfamily in Prostate Cancer Progression: A Systematic-Like Review.
    Binder MJ; Ward AC
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific targeting of metzincin family members with small-molecule inhibitors: progress toward a multifarious challenge.
    Georgiadis D; Yiotakis A
    Bioorg Med Chem; 2008 Oct; 16(19):8781-94. PubMed ID: 18790648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation and silencing of matrix metalloproteinases.
    Fu X; Parks WC; Heinecke JW
    Semin Cell Dev Biol; 2008 Feb; 19(1):2-13. PubMed ID: 17689277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metalloproteinase and inhibitor expression profiling of resorbing cartilage reveals pro-collagenase activation as a critical step for collagenolysis.
    Milner JM; Rowan AD; Cawston TE; Young DA
    Arthritis Res Ther; 2006; 8(5):R142. PubMed ID: 16919164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of extracellular tissue inhibitor of metalloproteinases-3 levels by cell membrane-bound and shed low density lipoprotein receptor-related protein 1.
    Scilabra SD; Troeberg L; Yamamoto K; Emonard H; Thøgersen I; Enghild JJ; Strickland DK; Nagase H
    J Biol Chem; 2013 Jan; 288(1):332-42. PubMed ID: 23166318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics.
    Raeeszadeh-Sarmazdeh M; Do LD; Hritz BG
    Cells; 2020 May; 9(5):. PubMed ID: 32466129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of TIMPs in regulation of extracellular matrix proteolysis.
    Arpino V; Brock M; Gill SE
    Matrix Biol; 2015; 44-46():247-54. PubMed ID: 25805621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fell-Muir Lecture: Metalloproteinases: from demolition squad to master regulators.
    Murphy G
    Int J Exp Pathol; 2010 Aug; 91(4):303-13. PubMed ID: 20666850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the netrin-like domain of procollagen C-proteinase enhancer-1 in the control of metalloproteinase activity.
    Bekhouche M; Kronenberg D; Vadon-Le Goff S; Bijakowski C; Lim NH; Font B; Kessler E; Colige A; Nagase H; Murphy G; Hulmes DJ; Moali C
    J Biol Chem; 2010 May; 285(21):15950-9. PubMed ID: 20207734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of metalloproteinases in tendon pathophysiology.
    Sbardella D; Tundo GR; Fasciglione GF; Gioia M; Bisicchia S; Gasbarra E; Ippolito E; Tarantino U; Coletta M; Marini S
    Mini Rev Med Chem; 2014; 14(12):978-87. PubMed ID: 25373850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A complete expression profile of matrix-degrading metalloproteinases in Dupuytren's disease.
    Johnston P; Chojnowski AJ; Davidson RK; Riley GP; Donell ST; Clark IM
    J Hand Surg Am; 2007 Mar; 32(3):343-51. PubMed ID: 17336841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases.
    Shiomi T; Lemaître V; D'Armiento J; Okada Y
    Pathol Int; 2010 Jul; 60(7):477-96. PubMed ID: 20594269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metalloproteinases: A parade of functions in matrix biology and an outlook for the future.
    Apte SS; Parks WC
    Matrix Biol; 2015; 44-46():1-6. PubMed ID: 25916966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential gene expression profiling of metalloproteinases and their inhibitors: a comparison between bovine intervertebral disc nucleus pulposus cells and articular chondrocytes.
    Cui Y; Yu J; Urban JP; Young DA
    Spine (Phila Pa 1976); 2010 May; 35(11):1101-8. PubMed ID: 20473119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.