These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 25702014)

  • 1. DFT study of Fe-Ni core-shell nanoparticles: stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth.
    Yang Z; Wang Q; Shan X; Li WQ; Chen GH; Zhu H
    J Chem Phys; 2015 Feb; 142(7):074306. PubMed ID: 25702014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, stability, electronic, magnetic, and catalytic properties of monometallic Pd, Au, and bimetallic Pd-Au core-shell nanoparticles.
    Wang Q; Lu X; Zhen Y; Li WQ; Chen GH; Yang Y
    J Chem Phys; 2018 Dec; 149(24):244307. PubMed ID: 30599716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperativity and Dynamics Increase the Performance of NiFe Dry Reforming Catalysts.
    Kim SM; Abdala PM; Margossian T; Hosseini D; Foppa L; Armutlulu A; van Beek W; Comas-Vives A; Copéret C; Müller C
    J Am Chem Soc; 2017 Feb; 139(5):1937-1949. PubMed ID: 28068106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QM/MD simulation of SWNT nucleation on transition-metal carbide nanoparticles.
    Page AJ; Yamane H; Ohta Y; Irle S; Morokuma K
    J Am Chem Soc; 2010 Nov; 132(44):15699-707. PubMed ID: 20961094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of Supported and Unsupported Catalytic Rh Nanoparticles: Effects on Nucleation of Single-Walled Carbon Nanotubes.
    Gomez-Ballesteros JL; Balbuena PB
    Langmuir; 2017 Oct; 33(42):11109-11119. PubMed ID: 28709379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical investigation on carbon nucleation on nickel carbides at initial stages of single-walled carbon nanotube formation.
    Yang Z; Wang Q; Shan X; Yang SW; Zhu H
    Phys Chem Chem Phys; 2014 Sep; 16(36):19654-60. PubMed ID: 25111778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation.
    Ding LX; Li GR; Wang ZL; Liu ZQ; Liu H; Tong YX
    Chemistry; 2012 Jul; 18(27):8386-91. PubMed ID: 22639332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive sites for chiral selective growth of single-walled carbon nanotubes: a DFT study of Ni55-C(n) complexes.
    Wang Q; Wang H; Wei L; Yang SW; Chen Y
    J Phys Chem A; 2012 Nov; 116(47):11709-17. PubMed ID: 23110420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of Fe/MgO catalysts by calcination for the growth of single- and double-walled carbon nanotubes.
    Ning G; Wei F; Wen Q; Luo G; Wang Y; Jin Y
    J Phys Chem B; 2006 Jan; 110(3):1201-5. PubMed ID: 16471664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DFT comparative study of carbon adsorption and diffusion on the surface and subsurface of Ni and Ni3Pd alloy.
    Cinquini F; Delbecq F; Sautet P
    Phys Chem Chem Phys; 2009 Dec; 11(48):11546-56. PubMed ID: 20024427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endofullerenes with metal atoms inside as precursors of nuclei of single-walled carbon nanotubes.
    Krestinin AV; Kislov MB; Ryabenko AG
    J Nanosci Nanotechnol; 2004 Apr; 4(4):390-7. PubMed ID: 15296228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes.
    Liu H; Takagi D; Chiashi S; Chokan T; Homma Y
    J Nanosci Nanotechnol; 2010 Jun; 10(6):4068-73. PubMed ID: 20355416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction.
    Gong K; Su D; Adzic RR
    J Am Chem Soc; 2010 Oct; 132(41):14364-6. PubMed ID: 20873798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of nitrate by bimetallic Fe/Ni nanoparticles.
    Kang H; Xiu Z; Chen J; Cao W; Guo Y; Li T; Jin Z
    Environ Technol; 2012 Sep; 33(16-18):2185-92. PubMed ID: 23240214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-scale insights into structural and thermodynamic stability of Pd-Ni bimetallic nanoparticles.
    Huang R; Wen YH; Zhu ZZ; Sun SG
    Phys Chem Chem Phys; 2016 Apr; 18(14):9847-54. PubMed ID: 27003035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.
    Ali S; Fu Liu T; Lian Z; Li B; Sheng Su D
    Phys Chem Chem Phys; 2017 Aug; 19(33):22344-22354. PubMed ID: 28805223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium.
    Ramírez-Caballero GE; Ma Y; Callejas-Tovar R; Balbuena PB
    Phys Chem Chem Phys; 2010 Mar; 12(9):2209-18. PubMed ID: 20165770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric and electronic structure and magnetic properties of Fe-Au nanoalloys: insights from ab initio calculations.
    Hong S; Rahman TS
    Phys Chem Chem Phys; 2015 Nov; 17(42):28177-85. PubMed ID: 25821143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.