BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 25702132)

  • 1. RNAi screens for genes involved in Golgi glycosylation.
    Goh GY; Bard FA
    Methods Mol Biol; 2015; 1270():411-26. PubMed ID: 25702132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-content screening and analysis of the Golgi complex.
    Galea G; Simpson JC
    Methods Cell Biol; 2013; 118():281-95. PubMed ID: 24295313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells.
    Chia J; Goh G; Racine V; Ng S; Kumar P; Bard F
    Mol Syst Biol; 2012; 8():629. PubMed ID: 23212246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput RNAi screening by time-lapse imaging of live human cells.
    Neumann B; Held M; Liebel U; Erfle H; Rogers P; Pepperkok R; Ellenberg J
    Nat Methods; 2006 May; 3(5):385-90. PubMed ID: 16628209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surprising roles for phospholipid binding proteins revealed by high throughput genetics.
    LeBlanc MA; McMaster CR
    Biochem Cell Biol; 2010 Aug; 88(4):565-74. PubMed ID: 20651827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing ER and Golgi N-glycosylation process using metabolic labeling in mammalian cultured cells.
    Péanne R; Vanbeselaere J; Vicogne D; Mir AM; Biot C; Matthijs G; Guérardel Y; Foulquier F
    Methods Cell Biol; 2013; 118():157-76. PubMed ID: 24295306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of glycosylation sites in the Golgi apparatus using immunolabeling and cytochemistry.
    Roth J
    J Electron Microsc Tech; 1991 Feb; 17(2):121-31. PubMed ID: 1826523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting the biological role of mucin-type O-glycosylation using RNA interference in Drosophila cell culture.
    Zhang L; Ten Hagen KG
    J Biol Chem; 2010 Nov; 285(45):34477-84. PubMed ID: 20807760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopy-Based High-Content Screening.
    Boutros M; Heigwer F; Laufer C
    Cell; 2015 Dec; 163(6):1314-25. PubMed ID: 26638068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence microscopy-based RNA interference screening.
    Gunkel M; Beil N; Beneke J; Reymann J; Erfle H
    Methods Mol Biol; 2015; 1251():59-66. PubMed ID: 25391794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sensor of protein O-glycosylation based on sequential processing in the Golgi apparatus.
    Bachert C; Linstedt AD
    Traffic; 2013 Jan; 14(1):47-56. PubMed ID: 23046148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The acidic environment of the Golgi is critical for glycosylation and transport.
    Maeda Y; Kinoshita T
    Methods Enzymol; 2010; 480():495-510. PubMed ID: 20816224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel glycan processing enzyme with exo-acting β-allosidase activity in the Golgi apparatus using a new platform for the synthesis of fluorescent substrates.
    Hakamata W; Miura K; Hirano T; Nishio T
    Bioorg Med Chem; 2015 Jan; 23(1):73-9. PubMed ID: 25497961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNAi methods and screening: RNAi based high-throughput genetic interaction screening.
    Cipriani PG; Piano F
    Methods Cell Biol; 2011; 106():89-111. PubMed ID: 22118275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of serum protein glycosylation with antibody-lectin microarray for high-throughput biomarker screening.
    Li C; Lubman DM
    Methods Mol Biol; 2011; 723():15-28. PubMed ID: 21370056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An image score inference system for RNAi genome-wide screening based on fuzzy mixture regression modeling.
    Wang J; Zhou X; Li F; Bradley PL; Chang SF; Perrimon N; Wong ST
    J Biomed Inform; 2009 Feb; 42(1):32-40. PubMed ID: 18547870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light and electron microscopical detection of sugar residues in tissue sections by gold labeled lectins and glycoproteins. II. Applications in the study of the topology of Golgi apparatus glycosylation steps and the regional distribution of lectin binding sites in the plasma membrane.
    Roth J; Taatjes DJ; Lucocq JM; Charest PM
    Acta Histochem Suppl; 1988; 36():125-40. PubMed ID: 3150549
    [No Abstract]   [Full Text] [Related]  

  • 18. A Multivariate Computational Method to Analyze High-Content RNAi Screening Data.
    Rameseder J; Krismer K; Dayma Y; Ehrenberger T; Hwang MK; Airoldi EM; Floyd SR; Yaffe MB
    J Biomol Screen; 2015 Sep; 20(8):985-97. PubMed ID: 25918037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of RNAi technology and fluorescent protein markers to study membrane traffic in C. elegans.
    Solinger JA; Poteryaev D; Spang A
    Methods Mol Biol; 2014; 1174():329-47. PubMed ID: 24947393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput lectin magnetic bead array-coupled tandem mass spectrometry for glycoprotein biomarker discovery.
    Choi E; Loo D; Dennis JW; O'Leary CA; Hill MM
    Electrophoresis; 2011 Dec; 32(24):3564-75. PubMed ID: 22180208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.