These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25702195)

  • 1. Dynamics of blood flow: modeling of the Fåhræus-Lindqvist effect.
    Chebbi R
    J Biol Phys; 2015 Jun; 41(3):313-26. PubMed ID: 25702195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Fåhræus-Lindqvist effect in small blood vessels: how does it help the heart?
    Ascolese M; Farina A; Fasano A
    J Biol Phys; 2019 Dec; 45(4):379-394. PubMed ID: 31792778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of blood flow: modeling of Fåhraeus and Fåhraeus-Lindqvist effects using a shear-induced red blood cell migration model.
    Chebbi R
    J Biol Phys; 2018 Dec; 44(4):591-603. PubMed ID: 30219980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A continuum mechanics model for the Fåhræus-Lindqvist effect.
    Farina A; Rosso F; Fasano A
    J Biol Phys; 2021 Sep; 47(3):253-270. PubMed ID: 34218404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic theory based model for blood flow and its viscosity.
    Gidaspow D; Huang J
    Ann Biomed Eng; 2009 Aug; 37(8):1534-45. PubMed ID: 19479375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow in microvascular networks. Experiments and simulation.
    Pries AR; Secomb TW; Gaehtgens P; Gross JF
    Circ Res; 1990 Oct; 67(4):826-34. PubMed ID: 2208609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical model for the Fåhræus effect in medium-large microvessels.
    Farina A; Fasano A; Rosso F
    J Theor Biol; 2023 Feb; 558():111355. PubMed ID: 36402201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semi-empirical model of apparent blood viscosity as a function of vessel diameter and discharge hematocrit.
    Kiani MF; Hudetz AG
    Biorheology; 1991; 28(1-2):65-73. PubMed ID: 2049533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a classic paper by Robin Fahraeus and Torsten Lindqvist to teach basic hemorheology.
    Toksvang LN; Berg RM
    Adv Physiol Educ; 2013 Jun; 37(2):129-33. PubMed ID: 23728130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microvascular hemodynamics: System properties1.
    Pries AR
    Biorheology; 2019; 56(1):1-13. PubMed ID: 30814342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood flow and cell-free layer in microvessels.
    Fedosov DA; Caswell B; Popel AS; Karniadakis GE
    Microcirculation; 2010 Nov; 17(8):615-28. PubMed ID: 21044216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology of the microcirculation.
    Pries AR; Secomb TW
    Clin Hemorheol Microcirc; 2003; 29(3-4):143-8. PubMed ID: 14724335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shock formation and non-linear dispersion in a microvascular capillary network.
    Pop SR; Richardson G; Waters SL; Jensen OE
    Math Med Biol; 2007 Dec; 24(4):379-400. PubMed ID: 17947254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamics in stenotic vessels of small diameter under steady state conditions: Effect of viscoelasticity and migration of red blood cells.
    Dimakopoulos Y; Kelesidis G; Tsouka S; Georgiou GC; Tsamopoulos J
    Biorheology; 2015; 52(3):183-210. PubMed ID: 26406781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cells stabilize flow in brain microvascular networks.
    Schmid F; Barrett MJP; Obrist D; Weber B; Jenny P
    PLoS Comput Biol; 2019 Aug; 15(8):e1007231. PubMed ID: 31469820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoscale simulation of blood flow in small vessels.
    Bagchi P
    Biophys J; 2007 Mar; 92(6):1858-77. PubMed ID: 17208982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood viscosity in tube flow: dependence on diameter and hematocrit.
    Pries AR; Neuhaus D; Gaehtgens P
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1770-8. PubMed ID: 1481902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hematocrit fluctuations within capillary tubes and estimation of Fåhraeus effect.
    Secomb TW; Pries AR; Gaehtgens P
    Int J Microcirc Clin Exp; 1987; 5(4):335-45. PubMed ID: 3557819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.