BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25702210)

  • 1. Cellular and molecular mechanisms of injury and spontaneous recovery.
    McGinn MJ; Povlishock JT
    Handb Clin Neurol; 2015; 127():67-87. PubMed ID: 25702210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traumatically induced axonal injury: pathogenesis and pathobiological implications.
    Povlishock JT
    Brain Pathol; 1992 Jan; 2(1):1-12. PubMed ID: 1341941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Update of neuropathology and neurological recovery after traumatic brain injury.
    Povlishock JT; Katz DI
    J Head Trauma Rehabil; 2005; 20(1):76-94. PubMed ID: 15668572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage.
    Farkas O; Povlishock JT
    Prog Brain Res; 2007; 161():43-59. PubMed ID: 17618969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts.
    Povlishock JT; Christman CW
    J Neurotrauma; 1995 Aug; 12(4):555-64. PubMed ID: 8683606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice.
    Thompson SN; Gibson TR; Thompson BM; Deng Y; Hall ED
    Exp Neurol; 2006 Sep; 201(1):253-65. PubMed ID: 16814284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular and molecular neuronal plasticity.
    Griesbach GS; Hovda DA
    Handb Clin Neurol; 2015; 128():681-90. PubMed ID: 25701914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current aspects of pathophysiology and cell dysfunction after severe head injury.
    Sahuquillo J; Poca MA; Amoros S
    Curr Pharm Des; 2001 Oct; 7(15):1475-503. PubMed ID: 11562294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All roads lead to disconnection?--Traumatic axonal injury revisited.
    Büki A; Povlishock JT
    Acta Neurochir (Wien); 2006 Feb; 148(2):181-93; discussion 193-4. PubMed ID: 16362181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Microvascular Disruption in Brain Damage from Traumatic Brain Injury.
    Logsdon AF; Lucke-Wold BP; Turner RC; Huber JD; Rosen CL; Simpkins JW
    Compr Physiol; 2015 Jul; 5(3):1147-60. PubMed ID: 26140712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury.
    Opii WO; Nukala VN; Sultana R; Pandya JD; Day KM; Merchant ML; Klein JB; Sullivan PG; Butterfield DA
    J Neurotrauma; 2007 May; 24(5):772-89. PubMed ID: 17518533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury.
    Wang H; Lynch JR; Song P; Yang HJ; Yates RB; Mace B; Warner DS; Guyton JR; Laskowitz DT
    Exp Neurol; 2007 Jul; 206(1):59-69. PubMed ID: 17521631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of traumatic brain injury in human brains reveals distinct cellular and molecular changes in contusion and pericontusion.
    Harish G; Mahadevan A; Pruthi N; Sreenivasamurthy SK; Puttamallesh VN; Keshava Prasad TS; Shankar SK; Srinivas Bharath MM
    J Neurochem; 2015 Jul; 134(1):156-72. PubMed ID: 25712633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI.
    Mazzeo AT; Beat A; Singh A; Bullock MR
    Exp Neurol; 2009 Aug; 218(2):363-70. PubMed ID: 19481077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and neurochemical sequelae following mild traumatic brain injury: summary of experimental data and clinical implications.
    Signoretti S; Vagnozzi R; Tavazzi B; Lazzarino G
    Neurosurg Focus; 2010 Nov; 29(5):E1. PubMed ID: 21039135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate.
    Tovar-y-Romo LB; Penagos-Puig A; Ramírez-Jarquín JO
    J Neurochem; 2016 Jan; 136(1):13-27. PubMed ID: 26376102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of traumatic brain injury: biomechanical, structural and cellular considerations.
    Davis AE
    Crit Care Nurs Q; 2000 Nov; 23(3):1-13. PubMed ID: 11852934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage.
    Glushakova OY; Johnson D; Hayes RL
    J Neurotrauma; 2014 Jul; 31(13):1180-93. PubMed ID: 24564198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interstitial F(2)-isoprostane 8-iso-PGF(2α) as a biomarker of oxidative stress after severe human traumatic brain injury.
    Clausen F; Marklund N; Lewén A; Enblad P; Basu S; Hillered L
    J Neurotrauma; 2012 Mar; 29(5):766-75. PubMed ID: 21639729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-Injury Administration of Mitochondrial Uncouplers Increases Tissue Sparing and Improves Behavioral Outcome following Traumatic Brain Injury in Rodents.
    Pandya JD; Pauly JR; Nukala VN; Sebastian AH; Day KM; Korde AS; Maragos WF; Hall ED; Sullivan PG
    J Neurotrauma; 2007 May; 24(5):798-811. PubMed ID: 17518535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.