These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25702698)

  • 1. Drought-resistant cereals: impact on water sustainability and nutritional quality.
    Thomas WT
    Proc Nutr Soc; 2015 Aug; 74(3):191-7. PubMed ID: 25702698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducing drought tolerance in plants: recent advances.
    Ashraf M
    Biotechnol Adv; 2010; 28(1):169-83. PubMed ID: 19914371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and genomic tools to improve drought tolerance in wheat.
    Fleury D; Jefferies S; Kuchel H; Langridge P
    J Exp Bot; 2010 Jul; 61(12):3211-22. PubMed ID: 20525798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomics-based precision breeding approaches to improve drought tolerance in rice.
    Swamy BP; Kumar A
    Biotechnol Adv; 2013 Dec; 31(8):1308-18. PubMed ID: 23702083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals?
    Monneveux P; Ramírez DA; Pino MT
    Plant Sci; 2013 May; 205-206():76-86. PubMed ID: 23498865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans.
    Valliyodan B; Ye H; Song L; Murphy M; Shannon JG; Nguyen HT
    J Exp Bot; 2017 Apr; 68(8):1835-1849. PubMed ID: 27927997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene discovery in cereals through quantitative trait loci and expression analysis in water-use efficiency measured by carbon isotope discrimination.
    Chen J; Chang SX; Anyia AO
    Plant Cell Environ; 2011 Dec; 34(12):2009-23. PubMed ID: 21752030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet.
    Yadav RS; Sehgal D; Vadez V
    J Exp Bot; 2011 Jan; 62(2):397-408. PubMed ID: 20819788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors.
    Morran S; Eini O; Pyvovarenko T; Parent B; Singh R; Ismagul A; Eliby S; Shirley N; Langridge P; Lopato S
    Plant Biotechnol J; 2011 Feb; 9(2):230-49. PubMed ID: 20642740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought and salt tolerances in wild relatives for wheat and barley improvement.
    Nevo E; Chen G
    Plant Cell Environ; 2010 Apr; 33(4):670-85. PubMed ID: 20040064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus.
    Swamy BP; Vikram P; Dixit S; Ahmed HU; Kumar A
    BMC Genomics; 2011 Jun; 12():319. PubMed ID: 21679437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Genetic characteristics associated with drought tolerance of plant height and thousand-grain mass of recombinant inbred lines of wheat].
    Yang DL; Zhang GH; Li XM; Xing H; Cheng HB; Ni SL; Chen XP
    Ying Yong Sheng Tai Xue Bao; 2012 Jun; 23(6):1569-76. PubMed ID: 22937645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops.
    Mir RR; Zaman-Allah M; Sreenivasulu N; Trethowan R; Varshney RK
    Theor Appl Genet; 2012 Aug; 125(4):625-45. PubMed ID: 22696006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops.
    Siddiqui MN; Léon J; Naz AA; Ballvora A
    J Exp Bot; 2021 Feb; 72(4):1007-1019. PubMed ID: 33096558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breeding for drought and heat tolerance in wheat.
    Langridge P; Reynolds M
    Theor Appl Genet; 2021 Jun; 134(6):1753-1769. PubMed ID: 33715017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219.
    Shamsudin NA; Swamy BP; Ratnam W; Sta Cruz MT; Raman A; Kumar A
    BMC Genet; 2016 Jan; 17():30. PubMed ID: 26818269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing drought tolerance in C(4) crops.
    Lopes MS; Araus JL; van Heerden PD; Foyer CH
    J Exp Bot; 2011 May; 62(9):3135-53. PubMed ID: 21511912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological characterization of common bean (Phaseolus vulgaris L.) under abiotic stresses for breeding purposes.
    Lanna AC; Silva RA; Ferraresi TM; Mendonça JA; Coelho GRC; Moreira AS; Valdisser PAMR; Brondani C; Vianello RP
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31149-31164. PubMed ID: 30187414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench).
    Xu W; Subudhi PK; Crasta OR; Rosenow DT; Mullet JE; Nguyen HT
    Genome; 2000 Jun; 43(3):461-9. PubMed ID: 10902709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.