BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 25702870)

  • 1. Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G.
    Sahtoe DD; van Dijk WJ; El Oualid F; Ekkebus R; Ovaa H; Sixma TK
    Mol Cell; 2015 Mar; 57(5):887-900. PubMed ID: 25702870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the activation and inhibition of the UCH37 deubiquitylase.
    Vander Linden RT; Hemmis CW; Schmitt B; Ndoja A; Whitby FG; Robinson H; Cohen RE; Yao T; Hill CP
    Mol Cell; 2015 Mar; 57(5):901-911. PubMed ID: 25702872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural plasticity allows UCH37 to be primed by RPN13 or locked down by INO80G.
    Chen X; Walters KJ
    Mol Cell; 2015 Mar; 57(5):767-768. PubMed ID: 25747657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains.
    Zhou ZR; Zhang YH; Liu S; Song AX; Hu HY
    Biochem J; 2012 Jan; 441(1):143-9. PubMed ID: 21851340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Understanding of USP7 Substrate Recognition and C-Terminal Activation.
    Rougé L; Bainbridge TW; Kwok M; Tong R; Di Lello P; Wertz IE; Maurer T; Ernst JA; Murray J
    Structure; 2016 Aug; 24(8):1335-1345. PubMed ID: 27452404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain.
    Nishio K; Kim SW; Kawai K; Mizushima T; Yamane T; Hamazaki J; Murata S; Tanaka K; Morimoto Y
    Biochem Biophys Res Commun; 2009 Dec; 390(3):855-60. PubMed ID: 19836345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate.
    Misaghi S; Galardy PJ; Meester WJ; Ovaa H; Ploegh HL; Gaudet R
    J Biol Chem; 2005 Jan; 280(2):1512-20. PubMed ID: 15531586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism.
    VanderLinden RT; Hemmis CW; Yao T; Robinson H; Hill CP
    J Biol Chem; 2017 Jun; 292(23):9493-9504. PubMed ID: 28442575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of human Uch37.
    Burgie SE; Bingman CA; Soni AB; Phillips GN
    Proteins; 2012 Feb; 80(2):649-54. PubMed ID: 21953935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1.
    Yao T; Song L; Xu W; DeMartino GN; Florens L; Swanson SK; Washburn MP; Conaway RC; Conaway JW; Cohen RE
    Nat Cell Biol; 2006 Sep; 8(9):994-1002. PubMed ID: 16906146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the Rpn13-induced activation of Uch37.
    Jiao L; Ouyang S; Shaw N; Song G; Feng Y; Niu F; Qiu W; Zhu H; Hung LW; Zuo X; Eleonora Shtykova V; Zhu P; Dong YH; Xu R; Liu ZJ
    Protein Cell; 2014; 5(8):616-30. PubMed ID: 24752541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropic stabilization of a deubiquitinase provides conformational plasticity and slow unfolding kinetics beneficial for functioning on the proteasome.
    Lee YC; Chang CY; Chen SY; Pan YR; Ho MR; Hsu SD
    Sci Rep; 2017 Mar; 7():45174. PubMed ID: 28338014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Familial and Somatic
    Peng H; Prokop J; Karar J; Park K; Cao L; Harbour JW; Bowcock AM; Malkowicz SB; Cheung M; Testa JR; Rauscher FJ
    Cancer Res; 2018 Mar; 78(5):1200-1213. PubMed ID: 29284740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate recognition and catalysis by UCH-L1.
    Luchansky SJ; Lansbury PT; Stein RL
    Biochemistry; 2006 Dec; 45(49):14717-25. PubMed ID: 17144664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution.
    Johnston SC; Larsen CN; Cook WJ; Wilkinson KD; Hill CP
    EMBO J; 1997 Jul; 16(13):3787-96. PubMed ID: 9233788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibiting UCH-L5: Rational Design of a Cyclic Ubiquitin-Based Peptide Inhibitor.
    Hameed DS; Ovaa H; van der Heden van Noort GJ; Sapmaz A
    Front Mol Biosci; 2022; 9():866467. PubMed ID: 35720124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers.
    Bett JS; Ritorto MS; Ewan R; Jaffray EG; Virdee S; Chin JW; Knebel A; Kurz T; Trost M; Tatham MH; Hay RT
    Biochem J; 2015 Mar; 466(3):489-98. PubMed ID: 25489924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction.
    Schreiner P; Chen X; Husnjak K; Randles L; Zhang N; Elsasser S; Finley D; Dikic I; Walters KJ; Groll M
    Nature; 2008 May; 453(7194):548-52. PubMed ID: 18497827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic Characterization of ASXL1/2-Mediated Allosteric Regulation of the BAP1 Deubiquitinase.
    Peng H; Cassel J; McCracken DS; Prokop JW; Sementino E; Cheung M; Collop PR; Polo A; Joshi S; Mandell JP; Ayyanathan K; Hinds D; Malkowicz SB; Harbour JW; Bowcock AM; Salvino J; Kennedy EJ; Testa JR; Rauscher FJ
    Mol Cancer Res; 2021 Jul; 19(7):1099-1112. PubMed ID: 33731362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the specificity of ubiquitin C-terminal hydrolases.
    Johnston SC; Riddle SM; Cohen RE; Hill CP
    EMBO J; 1999 Jul; 18(14):3877-87. PubMed ID: 10406793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.