These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25702880)

  • 1. Effects of sublethal doses of silver nanoparticles on Bacillus subtilis planktonic and sessile cells.
    Gambino M; Marzano V; Villa F; Vitali A; Vannini C; Landini P; Cappitelli F
    J Appl Microbiol; 2015 May; 118(5):1103-15. PubMed ID: 25702880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.
    Hsueh YH; Ke WJ; Hsieh CT; Lin KS; Tzou DY; Chiang CL
    PLoS One; 2015; 10(6):e0128457. PubMed ID: 26039692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of silver nanoparticles on wastewater biofilms.
    Sheng Z; Liu Y
    Water Res; 2011 Nov; 45(18):6039-50. PubMed ID: 21940033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sublethal concentrations of silver nanoparticles affect the mechanical stability of biofilms.
    Grün AY; Meier J; Metreveli G; Schaumann GE; Manz W
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24277-24288. PubMed ID: 27650851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions.
    Hsueh YH; Lin KS; Ke WJ; Hsieh CT; Chiang CL; Tzou DY; Liu ST
    PLoS One; 2015; 10(12):e0144306. PubMed ID: 26669836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of Silver Nanoparticles on a Natural Estuarine Plankton Community.
    Baptista MS; Miller RJ; Halewood ER; Hanna SK; Almeida CM; Vasconcelos VM; Keller AA; Lenihan HS
    Environ Sci Technol; 2015 Nov; 49(21):12968-74. PubMed ID: 26444256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sublethal concentrations of silver nanoparticles on Escherichia coli and Bacillus subtilis under aerobic and anaerobic conditions.
    Garuglieri E; Cattò C; Villa F; Zanchi R; Cappitelli F
    Biointerphases; 2016 Dec; 11(4):04B308. PubMed ID: 27984857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Citrate-capped silver nanoparticles showing good bactericidal effect against both planktonic and sessile bacteria and a low cytotoxicity to osteoblastic cells.
    Flores CY; Miñán AG; Grillo CA; Salvarezza RC; Vericat C; Schilardi PL
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3149-59. PubMed ID: 23534883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of short- and long-term exposure of silver nanoparticles and silver ions to Nitrosomonas europaea biofilms and planktonic cells.
    Barker LK; Giska JR; Radniecki TS; Semprini L
    Chemosphere; 2018 Sep; 206():606-614. PubMed ID: 29778938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of silver nanoparticles on natural marine biofilm bacteria.
    Fabrega J; Zhang R; Renshaw JC; Liu WT; Lead JR
    Chemosphere; 2011 Oct; 85(6):961-6. PubMed ID: 21782209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Bacillus subtilis response to different forms of silver.
    Rafińska K; Pomastowski P; Buszewski B
    Sci Total Environ; 2019 Apr; 661():120-129. PubMed ID: 30669044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity.
    Jiang X; Miclăuş T; Wang L; Foldbjerg R; Sutherland DS; Autrup H; Chen C; Beer C
    Nanotoxicology; 2015 Mar; 9(2):181-9. PubMed ID: 24738617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake.
    Prasad RY; McGee JK; Killius MG; Suarez DA; Blackman CF; DeMarini DM; Simmons SO
    Toxicol In Vitro; 2013 Sep; 27(6):2013-21. PubMed ID: 23872425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of probiotic Lactobacillus acidophilus ATCC 4356 bacteriocin on effect of HBsu on planktonic cells and biofilm formation of Bacillus subtilis.
    Sarikhani M; Kermanshahi RK; Ghadam P; Gharavi S
    Int J Biol Macromol; 2018 Aug; 115():762-766. PubMed ID: 29567501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification.
    Zheng X; Wang J; Chen Y; Wei Y
    J Hazard Mater; 2018 Feb; 344():291-298. PubMed ID: 29055833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media.
    Xue Y; Zhang T; Zhang B; Gong F; Huang Y; Tang M
    J Appl Toxicol; 2016 Mar; 36(3):352-60. PubMed ID: 26198703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planktonic and biofilm-grown nitrogen-cycling bacteria exhibit different susceptibilities to copper nanoparticles.
    Reyes VC; Opot SO; Mahendra S
    Environ Toxicol Chem; 2015 Apr; 34(4):887-97. PubMed ID: 25556815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells.
    Kawata K; Osawa M; Okabe S
    Environ Sci Technol; 2009 Aug; 43(15):6046-51. PubMed ID: 19731716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of silver nanoparticles with Pseudomonas putida biofilms.
    Fabrega J; Renshaw JC; Lead JR
    Environ Sci Technol; 2009 Dec; 43(23):9004-9. PubMed ID: 19943680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of Bacillus subtilis to silver inhibits activity of cytochrome c oxidase in vivo via interaction with SCO, the Cu
    Hussain S; Andrews D; Hill BC
    Metallomics; 2018 May; 10(5):735-744. PubMed ID: 29676768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.