BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 25702941)

  • 1. Micro- and nano-technologies for lipid bilayer-based ion-channel functional assays.
    Hirano-Iwata A; Ishinari Y; Yamamoto H; Niwano M
    Chem Asian J; 2015 Jun; 10(6):1266-74. PubMed ID: 25702941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable lipid bilayers based on micro- and nano-fabrication as a platform for recording ion-channel activities.
    Hirano-Iwata A; Oshima A; Mozumi H; Kimura Y; Niwano M
    Anal Sci; 2012; 28(11):1049-57. PubMed ID: 23149604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in Artificial Cell Membrane Systems as a Platform for Reconstituting Ion Channels.
    Komiya M; Kato M; Tadaki D; Ma T; Yamamoto H; Tero R; Tozawa Y; Niwano M; Hirano-Iwata A
    Chem Rec; 2020 Jul; 20(7):730-742. PubMed ID: 31944562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically stable solvent-free lipid bilayers in nano- and micro-tapered apertures for reconstitution of cell-free synthesized hERG channels.
    Tadaki D; Yamaura D; Araki S; Yoshida M; Arata K; Ohori T; Ishibashi KI; Kato M; Ma T; Miyata R; Tozawa Y; Yamamoto H; Niwano M; Hirano-Iwata A
    Sci Rep; 2017 Dec; 7(1):17736. PubMed ID: 29255199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of Human Ion Channels into Solvent-free Lipid Bilayers Enhanced by Centrifugal Forces.
    Hirano-Iwata A; Ishinari Y; Yoshida M; Araki S; Tadaki D; Miyata R; Ishibashi K; Yamamoto H; Kimura Y; Niwano M
    Biophys J; 2016 May; 110(10):2207-15. PubMed ID: 27224486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid bilayer microarray for parallel recording of transmembrane ion currents.
    Le Pioufle B; Suzuki H; Tabata KV; Noji H; Takeuchi S
    Anal Chem; 2008 Jan; 80(1):328-32. PubMed ID: 18001126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels.
    Phung T; Zhang Y; Dunlop J; Dalziel J
    Biosens Bioelectron; 2011 Mar; 26(7):3127-35. PubMed ID: 21211957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ninety-six-well planar lipid bilayer chip for ion channel recording fabricated by hybrid stereolithography.
    Suzuki H; Le Pioufle B; Takeuchi S
    Biomed Microdevices; 2009 Feb; 11(1):17-22. PubMed ID: 18584329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.
    Crescentini M; Bennati M; Saha SC; Ivica J; de Planque M; Morgan H; Tartagni M
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27213382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphiphobic Septa Enhance the Mechanical Stability of Free-Standing Bilayer Lipid Membranes.
    Yamaura D; Tadaki D; Araki S; Yoshida M; Arata K; Ohori T; Ishibashi KI; Kato M; Ma T; Miyata R; Yamamoto H; Tero R; Sakuraba M; Ogino T; Niwano M; Hirano-Iwata A
    Langmuir; 2018 May; 34(19):5615-5622. PubMed ID: 29664647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-standing lipid bilayers in silicon chips-membrane stabilization based on microfabricated apertures with a nanometer-scale smoothness.
    Hirano-Iwata A; Aoto K; Oshima A; Taira T; Yamaguchi RT; Kimura Y; Niwano M
    Langmuir; 2010 Feb; 26(3):1949-52. PubMed ID: 19799400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced long-term stability for single ion channel recordings using suspended poly(lipid) bilayers.
    Heitz BA; Xu J; Hall HK; Aspinwall CA; Saavedra SS
    J Am Chem Soc; 2009 May; 131(19):6662-3. PubMed ID: 19397328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current recordings of ion channel proteins immobilized on resin beads.
    Hirano M; Takeuchi Y; Aoki T; Yanagida T; Ide T
    Anal Chem; 2009 Apr; 81(8):3151-4. PubMed ID: 19296686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid reconstitution and recording of recombinant ion channels.
    Stockbridge RB; Tsai MF
    Methods Enzymol; 2015; 556():385-404. PubMed ID: 25857792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel Recordings of Transmembrane hERG Channel Currents Based on Solvent-Free Lipid Bilayer Microarray.
    Miyata R; Tadaki D; Yamaura D; Araki S; Sato M; Komiya M; Ma T; Yamamoto H; Niwano M; Hirano-Iwata A
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33478052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Well-defined microapertures for ion channel biosensors.
    Halža E; Bro TH; Bilenberg B; Koçer A
    Anal Chem; 2013 Jan; 85(2):811-5. PubMed ID: 23256755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bright ion channels and lipid bilayers.
    Szymański W; Yilmaz D; Koçer A; Feringa BL
    Acc Chem Res; 2013 Dec; 46(12):2910-23. PubMed ID: 23597020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Channel activity of a viral transmembrane peptide in micro-BLMs: Vpu(1-32) from HIV-1.
    Römer W; Lam YH; Fischer D; Watts A; Fischer WB; Göring P; Wehrspohn RB; Gösele U; Steinem C
    J Am Chem Soc; 2004 Dec; 126(49):16267-74. PubMed ID: 15584764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip.
    Suzuki H; Tabata KV; Noji H; Takeuchi S
    Biosens Bioelectron; 2007 Jan; 22(6):1111-5. PubMed ID: 16730973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing.
    Sugawara M
    Chem Rec; 2018 Apr; 18(4):433-444. PubMed ID: 29135061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.