These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25703228)

  • 21. Experimental set up for in situ transmission electron microscopy observations of chemical processes.
    Sharma R
    Micron; 2012 Nov; 43(11):1147-55. PubMed ID: 22622161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure analysis of defects in nanometer space inside a crystal: creation and agglomeration of point defects in Si and Ge revealed by high-resolution electron microscopy.
    Takeda S
    Microsc Res Tech; 1998 Feb; 40(4):313-35. PubMed ID: 9523763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Screw dislocation driven growth of nanomaterials.
    Meng F; Morin SA; Forticaux A; Jin S
    Acc Chem Res; 2013 Jul; 46(7):1616-26. PubMed ID: 23738750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pushing the envelope of in situ transmission electron microscopy.
    Ramachandramoorthy R; Bernal R; Espinosa HD
    ACS Nano; 2015 May; 9(5):4675-85. PubMed ID: 25942405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developing of an environmental cell TEM holder for dynamic in situ observation.
    Bataineh KM
    Rev Sci Instrum; 2016 Feb; 87(2):023705. PubMed ID: 26931858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-Time Characterization Using in situ RHEED Transmission Mode and TEM for Investigation of the Growth Behaviour of Nanomaterials.
    Jo J; Tchoe Y; Yi GC; Kim M
    Sci Rep; 2018 Jan; 8(1):1694. PubMed ID: 29374190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic scale mechanics explored by in situ transmission electron microscopy with a quartz length-extension resonator as a force sensor.
    Zhang J; Ishizuka K; Tomitori M; Arai T; Oshima Y
    Nanotechnology; 2020 May; 31(20):205706. PubMed ID: 32000148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of windowed type environmental-cell transmission electron microscope for in situ observation of gas-solid interactions.
    Kawasaki T; Ueda K; Ichihashi M; Tanji T
    Rev Sci Instrum; 2009 Nov; 80(11):113701. PubMed ID: 19947731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transmission electron microscope as an ultimate tool for nanomaterial property studies.
    Kawamoto N; Tang DM; Wei X; Wang X; Mitome M; Bando Y; Golberg D
    Microscopy (Oxf); 2013 Feb; 62(1):157-75. PubMed ID: 23220846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transmission electron microscopy and the science of carbon nanomaterials.
    Zhang B; Su DS
    Small; 2014 Jan; 10(2):222-9. PubMed ID: 23913822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imaging of transient structures using nanosecond in situ TEM.
    Kim JS; Lagrange T; Reed BW; Taheri ML; Armstrong MR; King WE; Browning ND; Campbell GH
    Science; 2008 Sep; 321(5895):1472-5. PubMed ID: 18787163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscopic characterization of peptide nanostructures.
    Mammadov R; Tekinay AB; Dana A; Guler MO
    Micron; 2012 Feb; 43(2-3):69-84. PubMed ID: 21821422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in situ nanoindentation specimen holder for a high voltage transmission electron microscope.
    Wall MA; Dahmen U
    Microsc Res Tech; 1998 Aug; 42(4):248-54. PubMed ID: 9779829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science.
    Takeda S; Yoshida H
    Microscopy (Oxf); 2013 Feb; 62(1):193-203. PubMed ID: 23325929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ chemoresistive sensing in the environmental TEM: probing functional devices and their nanoscale morphology.
    Steinhauer S; Vernieres J; Krainer J; Köck A; Grammatikopoulos P; Sowwan M
    Nanoscale; 2017 Jun; 9(22):7380-7384. PubMed ID: 28387407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of in situ optical-electrical MEMS platform for semiconductor characterization.
    Cai S; Gu C; Wei Y; Gu M; Pan X; Wang P
    Ultramicroscopy; 2018 Nov; 194():57-63. PubMed ID: 30092390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films.
    Hosseinian E; Pierron ON
    Nanoscale; 2013 Dec; 5(24):12532-41. PubMed ID: 24173603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Situ Electron Driven Carbon Nanopillar-Fullerene Transformation through Cr Atom Mediation.
    Zhao L; Ta HQ; Dianat A; Soni A; Fediai A; Yin W; Gemming T; Trzebicka B; Cuniberti G; Liu Z; Bachmatiuk A; Rummeli MH
    Nano Lett; 2017 Aug; 17(8):4725-4732. PubMed ID: 28691821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymer manipulation and nanofabrication in real time using transmission electron microscopy.
    Brown RM; Barnes Z; Sawatari C; Kondo T
    Biomacromolecules; 2007 Jan; 8(1):70-6. PubMed ID: 17206790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.