BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25703337)

  • 1. When molecular probes meet self-assembly: an enhanced quenching effect.
    Ren C; Wang H; Mao D; Zhang X; Fengzhao Q; Shi Y; Ding D; Kong D; Wang L; Yang Z
    Angew Chem Int Ed Engl; 2015 Apr; 54(16):4823-7. PubMed ID: 25703337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene oxide-enhanced cytoskeleton imaging and mitosis tracking.
    Li QR; Jiao JB; Li LL; He XP; Zang Y; James TD; Chen GR; Guo L; Li J
    Chem Commun (Camb); 2017 Mar; 53(23):3373-3376. PubMed ID: 28265597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized Ratiometric Fluorescent Probes by Peptide Self-Assembly.
    Cai Y; Zhan J; Shen H; Mao D; Ji S; Liu R; Yang B; Kong D; Wang L; Yang Z
    Anal Chem; 2016 Jan; 88(1):740-5. PubMed ID: 26630460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular dimers: a new design strategy for fluorescence-quenched probes.
    Johansson MK; Cook RM
    Chemistry; 2003 Aug; 9(15):3466-71. PubMed ID: 12898673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of the self-quenching of fluorescence near silver metallic surfaces.
    Lakowicz JR; Malicka J; D'Auria S; Gryczynski I
    Anal Biochem; 2003 Sep; 320(1):13-20. PubMed ID: 12895465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel cell-penetrating Janus nanoprobe for ratiometric fluorescence detection of pH in living cells.
    Wang L; Zhou Y; Zhang Y; Zhang G; Zhang C; He Y; Dong C; Shuang S
    Talanta; 2020 Mar; 209():120436. PubMed ID: 31892062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FITC-quencher based caspase 3-activatable nanoprobes for effectively sensing caspase 3 in vitro and in cells.
    Tang A; Mei B; Wang W; Hu W; Li F; Zhou J; Yang Q; Cui H; Wu M; Liang G
    Nanoscale; 2013 Oct; 5(19):8963-7. PubMed ID: 23970215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific detection and imaging of enzyme activity by signal-amplifiable self-assembling (19)F MRI probes.
    Matsuo K; Kamada R; Mizusawa K; Imai H; Takayama Y; Narazaki M; Matsuda T; Takaoka Y; Hamachi I
    Chemistry; 2013 Sep; 19(38):12875-83. PubMed ID: 23955524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Doubly-Quenched Fluorescent Probe for Low-Background Detection of Mitochondrial H
    Liu J; Liang J; Wu C; Zhao Y
    Anal Chem; 2019 May; 91(10):6902-6909. PubMed ID: 31021600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-quenched Molecular Probe Based on Aggregation-Induced Emission and Photoinduced Electron Transfer Mechanisms for Formaldehyde Detection in Human Serum.
    Yang H; Wang F; Zheng J; Lin H; Liu B; Tang YD; Zhang CJ
    Chem Asian J; 2018 Jun; 13(11):1432-1437. PubMed ID: 29654635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes.
    Marras SA; Kramer FR; Tyagi S
    Nucleic Acids Res; 2002 Nov; 30(21):e122. PubMed ID: 12409481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choosing reporter-quencher pairs for efficient quenching through formation of intramolecular dimers.
    Johansson MK
    Methods Mol Biol; 2006; 335():17-29. PubMed ID: 16785617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data.
    Voglino L; Simon SA; McIntosh TJ
    Biochemistry; 1999 Jun; 38(23):7509-16. PubMed ID: 10360948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide-Induced AIEgen Self-Assembly: A New Strategy to Realize Highly Sensitive Fluorescent Light-Up Probes.
    Han A; Wang H; Kwok RT; Ji S; Li J; Kong D; Tang BZ; Liu B; Yang Z; Ding D
    Anal Chem; 2016 Apr; 88(7):3872-8. PubMed ID: 26948051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A red emitting mitochondria-targeted AIE probe as an indicator for membrane potential and mouse sperm activity.
    Zhao N; Chen S; Hong Y; Tang BZ
    Chem Commun (Camb); 2015 Sep; 51(71):13599-602. PubMed ID: 26264419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive imaging of sialyltransferase activity in living cells by chemoselective recognition.
    Bao L; Ding L; Yang M; Ju H
    Sci Rep; 2015 Jun; 5():10947. PubMed ID: 26046317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan.
    Marmé N; Knemeyer JP; Sauer M; Wolfrum J
    Bioconjug Chem; 2003; 14(6):1133-9. PubMed ID: 14624626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo imaging of intraperitoneally disseminated tumors in model mice by using activatable fluorescent small-molecular probes for activity of cathepsins.
    Fujii T; Kamiya M; Urano Y
    Bioconjug Chem; 2014 Oct; 25(10):1838-46. PubMed ID: 25196809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel fluorescent substrates for detection of trypsin activity and inhibitor screening by self-quenching.
    Sato D; Kato T
    Bioorg Med Chem Lett; 2016 Dec; 26(23):5736-5740. PubMed ID: 27810242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel rhodamine-riboflavin conjugate probe exhibits distinct fluorescence resonance energy transfer that enables riboflavin trafficking and subcellular localization studies.
    Phelps MA; Foraker AB; Gao W; Dalton JT; Swaan PW
    Mol Pharm; 2004; 1(4):257-66. PubMed ID: 15981585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.