BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25703788)

  • 1. Tuning electronic states of a CdSe/ZnS quantum dot by only one functional dye molecule.
    Zenkevich E; Stupak A; Göhler C; Krasselt C; von Borczyskowski C
    ACS Nano; 2015 Mar; 9(3):2886-903. PubMed ID: 25703788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation principles and ligand dynamics of nanoassemblies of CdSe quantum dots and functionalised dye molecules.
    Blaudeck T; Zenkevich EI; Abdel-Mottaleb M; Szwaykowska K; Kowerko D; Cichos F; von Borczyskowski C
    Chemphyschem; 2012 Mar; 13(4):959-72. PubMed ID: 22213596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRET and ligand related NON-FRET processes in single quantum dot-perylene bisimide assemblies.
    Kowerko D; Schuster J; Amecke N; Abdel-Mottaleb M; Dobrawa R; Würthner F; von Borczyskowski C
    Phys Chem Chem Phys; 2010 Apr; 12(16):4112-23. PubMed ID: 20379502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots.
    Lee DU; Kim DH; Choi DH; Kim SW; Lee HS; Yoo KH; Kim TW
    Opt Express; 2016 Jan; 24(2):A350-7. PubMed ID: 26832587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subsecond luminescence intensity fluctuations of single CdSe quantum dots.
    Biju V; Makita Y; Nagase T; Yamaoka Y; Yokoyama H; Baba Y; Ishikawa M
    J Phys Chem B; 2005 Aug; 109(30):14350-5. PubMed ID: 16852805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fluorescence intermittency for quantum dots is not power-law distributed: a luminescence intensity resolved approach.
    Schmidt R; Krasselt C; Göhler C; von Borczyskowski C
    ACS Nano; 2014 Apr; 8(4):3506-21. PubMed ID: 24580107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nature of non-FRET photoluminescence quenching in nanoassemblies from semiconductor quantum dots and dye molecules.
    Stupak AP; Blaudeck T; Zenkevich EI; Krause S; von Borczyskowski C
    Phys Chem Chem Phys; 2018 Jul; 20(27):18579-18600. PubMed ID: 29953143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.
    Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA
    Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots.
    Lee KH; Lee JH; Kang HD; Park B; Kwon Y; Ko H; Lee C; Lee J; Yang H
    ACS Nano; 2014 May; 8(5):4893-901. PubMed ID: 24758609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidentate surface ligand exchange for the immobilization of CdSe/ZnS quantum dots and surface quantum dot-oligonucleotide conjugates.
    Algar WR; Krull UJ
    Langmuir; 2008 May; 24(10):5514-20. PubMed ID: 18412378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pH-dependent photoluminescence of colloidal CdSe/ZnS quantum dots with different organic coatings.
    Debruyne D; Deschaume O; Coutiño-Gonzalez E; Locquet JP; Hofkens J; Van Bael MJ; Bartic C
    Nanotechnology; 2015 Jan; 26(25):255703. PubMed ID: 26031426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube.
    Biju V; Itoh T; Baba Y; Ishikawa M
    J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms.
    Aldeek F; Mustin C; Balan L; Roques-Carmes T; Fontaine-Aupart MP; Schneider R
    Biomaterials; 2011 Aug; 32(23):5459-70. PubMed ID: 21549423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots.
    Hu S; Ren Y; Wang Y; Li J; Qu J; Liu L; Ma H; Tang Y
    Beilstein J Nanotechnol; 2019; 10():22-31. PubMed ID: 30680276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoluminescence of charged CdSe/ZnS quantum dots in the gas phase: effects of charge and heating on absorption and emission probabilities.
    Howder CR; Long BA; Bell DM; Furakawa KH; Johnson RC; Fang Z; Anderson SL
    ACS Nano; 2014 Dec; 8(12):12534-48. PubMed ID: 25427008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single CdSe/ZnS nanocrystals in an ion trap: charge and mass determination and photophysics evolution with changing mass, charge, and temperature.
    Bell DM; Howder CR; Johnson RC; Anderson SL
    ACS Nano; 2014 Mar; 8(3):2387-98. PubMed ID: 24410129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation Energy Dependence of the Photoluminescence Quantum Yields of Core and Core/Shell Quantum Dots.
    Hoy J; Morrison PJ; Steinberg LK; Buhro WE; Loomis RA
    J Phys Chem Lett; 2013 Jun; 4(12):2053-60. PubMed ID: 26283252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoassemblies designed from semiconductor quantum dots and molecular arrays.
    Zenkevich E; Cichos F; Shulga A; Petrov EP; Blaudeck T; von Borczyskowski C
    J Phys Chem B; 2005 May; 109(18):8679-92. PubMed ID: 16852028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand Induced Spectral Changes in CdSe Quantum Dots.
    Azpiroz JM; De Angelis F
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19736-45. PubMed ID: 26289823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-sensitive photoluminescence of CdSe quantum dot clusters.
    Biju V; Makita Y; Sonoda A; Yokoyama H; Baba Y; Ishikawa M
    J Phys Chem B; 2005 Jul; 109(29):13899-905. PubMed ID: 16852744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.