BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 25703935)

  • 1. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein.
    Charuchinda P; Waditee-Sirisattha R; Kageyama H; Yamada D; Sirisattha S; Tanaka Y; Mahakhant A; Takabe T
    Biosci Biotechnol Biochem; 2015; 79(7):1119-24. PubMed ID: 25703935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unique caleosin in oil bodies of lily pollen.
    Jiang PL; Jauh GY; Wang CS; Tzen JT
    Plant Cell Physiol; 2008 Sep; 49(9):1390-5. PubMed ID: 18632804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unique caleosin serving as the major integral protein in oil bodies isolated from Chlorella sp. cells cultured with limited nitrogen.
    Lin IP; Jiang PL; Chen CS; Tzen JT
    Plant Physiol Biochem; 2012 Dec; 61():80-7. PubMed ID: 23085585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic analysis and expression investigation of caleosin gene family in Arabidopsis.
    Shen Y; Xie J; Liu RD; Ni XF; Wang XH; Li ZX; Zhang M
    Biochem Biophys Res Commun; 2014 Jun; 448(4):365-71. PubMed ID: 24796675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis of gene expression in Chlorella vulgaris under salt stress.
    Abdellaoui N; Kim MJ; Choi TJ
    World J Microbiol Biotechnol; 2019 Aug; 35(9):141. PubMed ID: 31463611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable oil bodies sheltered by a unique caleosin in cycad megagametophytes.
    Jiang PL; Chen JC; Chiu ST; Tzen JT
    Plant Physiol Biochem; 2009; 47(11-12):1009-16. PubMed ID: 19635673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delineation of plant caleosin residues critical for functional divergence, positive selection and coevolution.
    Song W; Qin Y; Zhu Y; Yin G; Wu N; Li Y; Hu Y
    BMC Evol Biol; 2014 Jun; 14():124. PubMed ID: 24913827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis.
    Kim YY; Jung KW; Yoo KS; Jeung JU; Shin JS
    Plant Cell Physiol; 2011 May; 52(5):874-84. PubMed ID: 21471120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of artificial oil bodies constituted with recombinant caleosins.
    Liu TH; Chyan CL; Li FY; Tzen JT
    J Agric Food Chem; 2009 Mar; 57(6):2308-13. PubMed ID: 19216529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds.
    Chen JC; Tsai CC; Tzen JT
    Plant Cell Physiol; 1999 Oct; 40(10):1079-86. PubMed ID: 10589521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-terminus of seed caleosins is essential for lipid droplet sorting but not for lipid accumulation.
    Purkrtová Z; Chardot T; Froissard M
    Arch Biochem Biophys; 2015 Aug; 579():47-54. PubMed ID: 26032334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis.
    Partridge M; Murphy DJ
    Plant Physiol Biochem; 2009 Sep; 47(9):796-806. PubMed ID: 19467604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of caleosin and oleosin in oil bodies of pine pollen.
    Pasaribu B; Chen CS; Liao YK; Jiang PL; Tzen JTC
    Plant Physiol Biochem; 2017 Feb; 111():20-29. PubMed ID: 27889638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DcHsp17.7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity.
    Song NH; Ahn YJ
    N Biotechnol; 2011 Oct; 28(6):698-704. PubMed ID: 21539946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the caleosin gene family in the Triticeae.
    Khalil HB; Brunetti SC; Pham UM; Maret D; Laroche A; Gulick PJ
    BMC Genomics; 2014 Mar; 15(1):239. PubMed ID: 24673767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitution of stable artificial oil bodies with triacylglycerol, phospholipid, and caleosin.
    Chen MC; Chyan CL; Lee TT; Huang SH; Tzen JT
    J Agric Food Chem; 2004 Jun; 52(12):3982-7. PubMed ID: 15186126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in fatty acid composition of Chlorella vulgaris by hypochlorous acid.
    Park JY; Choi SA; Jeong MJ; Nam B; Oh YK; Lee JS
    Bioresour Technol; 2014 Jun; 162():379-83. PubMed ID: 24785789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of caleosin in
    Pasaribu B; Fu JH; Jiang PL
    Plant Signal Behav; 2020 Aug; 15(8):1779486. PubMed ID: 32552503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination and analyses of the N-termini of oil-body proteins, steroleosin, caleosin and oleosin.
    Lin LJ; Liao PC; Yang HH; Tzen JT
    Plant Physiol Biochem; 2005 Aug; 43(8):770-6. PubMed ID: 16198588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and expression of hardening-induced genes in Chlorella vulgaris C-27: the most abundant clone encodes a late embryogenesis abundant protein.
    Joh T; Honjoh K; Yoshimoto M; Funabashi J; Miyamoto T; Hatano S
    Plant Cell Physiol; 1995 Jan; 36(1):85-93. PubMed ID: 7719632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.