BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25704075)

  • 1. Force control in chronic stroke.
    Kang N; Cauraugh JH
    Neurosci Biobehav Rev; 2015 May; 52():38-48. PubMed ID: 25704075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-frequency repetitive TMS plus anodal transcranial DCS prevents transient decline in bimanual movement induced by contralesional inhibitory rTMS after stroke.
    Takeuchi N; Tada T; Matsuo Y; Ikoma K
    Neurorehabil Neural Repair; 2012 Oct; 26(8):988-98. PubMed ID: 22412170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force control improvements in chronic stroke: bimanual coordination and motor synergy evidence after coupled bimanual movement training.
    Kang N; Cauraugh JH
    Exp Brain Res; 2014 Feb; 232(2):503-13. PubMed ID: 24212257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimanual isometric force control: asymmetry and coordination evidence post stroke.
    Lodha N; Coombes SA; Cauraugh JH
    Clin Neurophysiol; 2012 Apr; 123(4):787-95. PubMed ID: 21924949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimanual force control strategies in chronic stroke: finger extension versus power grip.
    Lodha N; Patten C; Coombes SA; Cauraugh JH
    Neuropsychologia; 2012 Sep; 50(11):2536-45. PubMed ID: 22781814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paretic hand unimanual force control: Improved submaximal force production and regularity.
    Kang N; Cauraugh JH
    Neurosci Res; 2015 May; 94():79-86. PubMed ID: 25527304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic bimanual force control in chronic stroke: contribution of non-paretic and paretic hands.
    Patel P; Lodha N
    Exp Brain Res; 2019 Aug; 237(8):2123-2133. PubMed ID: 31197412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change of facilitation during voluntary bilateral hand activation after stroke.
    Renner CI; Woldag H; Atanasova R; Hummelsheim H
    J Neurol Sci; 2005 Dec; 239(1):25-30. PubMed ID: 16129451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional implications of impaired bimanual force coordination in chronic stroke.
    Patel P; Lodha N
    Neurosci Lett; 2020 Nov; 738():135387. PubMed ID: 32941974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining impairment of adaptive compensation for stabilizing motor repetitions in stroke survivors.
    Kim Y; Koh K; Yoon B; Kim WS; Shin JH; Park HS; Shim JK
    Exp Brain Res; 2017 Dec; 235(12):3543-3552. PubMed ID: 28879510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-stroke deficits in the anticipatory control and bimanual coordination during naturalistic cooperative bimanual action.
    Potts CA; Kantak SS
    J Neuroeng Rehabil; 2023 Nov; 20(1):153. PubMed ID: 37950249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke.
    Tretriluxana J; Kantak S; Tretriluxana S; Wu AD; Fisher BE
    Disabil Rehabil Assist Technol; 2013 Mar; 8(2):121-4. PubMed ID: 23244391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does the contribution of the paretic hand to bimanual tasks change with grip strength capacity following stroke?
    Pollet AK; Patel P; Lodha N
    Neuropsychologia; 2022 Apr; 168():108186. PubMed ID: 35189182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor control hierarchy in joint action that involves bimanual force production.
    Masumoto J; Inui N
    J Neurophysiol; 2015 Jun; 113(10):3736-43. PubMed ID: 25904710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimanual coordination deficits in hands following stroke and their relationship with motor and functional performance.
    Lai CH; Sung WH; Chiang SL; Lu LH; Lin CH; Tung YC; Lin CH
    J Neuroeng Rehabil; 2019 Aug; 16(1):101. PubMed ID: 31375122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke.
    Nowak DA; Grefkes C; Dafotakis M; Eickhoff S; Küst J; Karbe H; Fink GR
    Arch Neurol; 2008 Jun; 65(6):741-7. PubMed ID: 18541794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of unilateral and bilateral impairments on bimanual force production following stroke.
    Nguyen H; Phan T; Shadmehr R; Lee SW
    J Neurophysiol; 2023 Sep; 130(3):608-618. PubMed ID: 37529847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation likelihood estimation meta-analysis of motor-related neural activity after stroke.
    Rehme AK; Eickhoff SB; Rottschy C; Fink GR; Grefkes C
    Neuroimage; 2012 Feb; 59(3):2771-82. PubMed ID: 22023742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging.
    Grefkes C; Nowak DA; Eickhoff SB; Dafotakis M; Küst J; Karbe H; Fink GR
    Ann Neurol; 2008 Feb; 63(2):236-46. PubMed ID: 17896791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical application of computerized evaluation and re-education biofeedback prototype for sensorimotor control of the hand in stroke patients.
    Hsu HY; Lin CF; Su FC; Kuo HT; Chiu HY; Kuo LC
    J Neuroeng Rehabil; 2012 May; 9():26. PubMed ID: 22571177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.