These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2570435)

  • 1. Rats administered chronic neuroleptics develop oral movements which are similar in form to those in humans with tardive dyskinesia.
    Ellison G; See RE
    Psychopharmacology (Berl); 1989; 98(4):564-6. PubMed ID: 2570435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tremorous mouth movements in rats administered chronic neuroleptics.
    Ellison G; See R; Levin E; Kinney J
    Psychopharmacology (Berl); 1987; 92(1):122-6. PubMed ID: 2885880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic neuroleptics alter the effects of the D1 agonist SK&F 38393 and the D2 agonist LY171555 on oral movements in rats.
    Ellison G; Johansson P; Levin E; See R; Gunne L
    Psychopharmacology (Berl); 1988; 96(2):253-7. PubMed ID: 2906749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroleptic-induced oral movements in rats: methodological issues.
    Levy AD; See RE; Levin ED; Ellison GD
    Life Sci; 1987 Sep; 41(12):1499-506. PubMed ID: 2887997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of chronic administration of haloperidol and the atypical neuroleptics, clozapine and raclopride, in an animal model of tardive dyskinesia.
    See RE; Ellison G
    Eur J Pharmacol; 1990 Jun; 181(3):175-86. PubMed ID: 2384130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of oral movements in rats during and after chronic haloperidol and fluphenazine administration.
    See RE; Levin ED; Ellison GD
    Psychopharmacology (Berl); 1988; 94(3):421-7. PubMed ID: 3128820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential striatal levels of TNF-alpha, NFkappaB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia.
    Bishnoi M; Chopra K; Kulkarni SK
    Prog Neuropsychopharmacol Biol Psychiatry; 2008 Aug; 32(6):1473-8. PubMed ID: 18554768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of 5-HT1A and 5-HT2A/2C receptor modulation on neuroleptic-induced vacuous chewing movements.
    Naidu PS; Kulkarni SK
    Eur J Pharmacol; 2001 Sep; 428(1):81-6. PubMed ID: 11779040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic haloperidol effects on oral movements and radial-arm maze performance in rats.
    Levin ED; Galen DM; Ellison GD
    Pharmacol Biochem Behav; 1987 Jan; 26(1):1-6. PubMed ID: 3562481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oral dyskinesia in brain-damaged rats withdrawn from a neuroleptic: implication for models of tardive dyskinesia.
    Glassman RB; Glassman HN
    Psychopharmacology (Berl); 1980; 69(1):19-25. PubMed ID: 6104844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroleptic-induced vacuous chewing movements as an animal model of tardive dyskinesia: a study in three rat strains.
    Tamminga CA; Dale JM; Goodman L; Kaneda H; Kaneda N
    Psychopharmacology (Berl); 1990; 102(4):474-8. PubMed ID: 1982902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of striatal extracellular dopamine and dopamine metabolites by microdialysis in haloperidol-treated rats exhibiting oral dyskinesia.
    See RE
    Neuropsychopharmacology; 1993 Sep; 9(2):101-9. PubMed ID: 8216693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposite effects of a D1 and a D2 agonist on oral movements in rats.
    Johansson P; Levin E; Gunne L; Ellison G
    Eur J Pharmacol; 1987 Jan; 134(1):83-8. PubMed ID: 3493912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High frequency oral movements induced by long-term administration of amperozide but not FG5803 in rats.
    Liminga U; Andren PE; Ohlund LS; Gunne LM
    Psychopharmacology (Berl); 1996 Feb; 123(3):223-3O. PubMed ID: 8833415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-induced oral dyskinesias in rats after traditional and new neuroleptics.
    Kakigi T; Gao XM; Tamminga CA
    J Neural Transm Gen Sect; 1995; 101(1-3):41-9. PubMed ID: 8695056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic administration of typical, but not atypical neuroleptics induce persisting alterations in rest-activity cycles in rats.
    Ellison G; See RE
    Pharmacol Biochem Behav; 1990 Aug; 36(4):807-11. PubMed ID: 1977177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed appearance of facial tics following chronic fluphenazine administration to guinea pigs.
    Weinstein D; See RE; Ellison G
    Pharmacol Biochem Behav; 1989 Apr; 32(4):1057-60. PubMed ID: 2798529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concomitant development of oral dyskinesia and memory deficits in reserpine-treated male and female mice.
    Silva RH; AbĂ­lio VC; Torres-Leite D; Bergamo M; Chinen CC; Claro FT; Carvalho Rde C; Frussa-Filho R
    Behav Brain Res; 2002 May; 132(2):171-7. PubMed ID: 11997147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-administration of progabide inhibits haloperidol-induced oral dyskinesias in rats.
    Kaneda H; Shirakawa O; Dale J; Goodman L; Bachus SE; Tamminga CA
    Eur J Pharmacol; 1992 Feb; 212(1):43-9. PubMed ID: 1555638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermittent and continuous haloperidol regimens produce different types of oral dyskinesias in rats.
    See RE; Ellison G
    Psychopharmacology (Berl); 1990; 100(3):404-12. PubMed ID: 2315437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.