These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 25704394)

  • 1. Combined effects of temperature, pressure, and co-solvents on the polymerization kinetics of actin.
    Rosin C; Estel K; Hälker J; Winter R
    Chemphyschem; 2015 May; 16(7):1379-85. PubMed ID: 25704394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cosolvent and crowding effects on the polymerization kinetics of actin.
    Rosin C; Schummel PH; Winter R
    Phys Chem Chem Phys; 2015 Apr; 17(13):8330-7. PubMed ID: 25376237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cosolvent and Crowding Effects on the Temperature and Pressure Dependent Conformational Dynamics and Stability of Globular Actin.
    Schummel PH; Haag A; Kremer W; Kalbitzer HR; Winter R
    J Phys Chem B; 2016 Jul; 120(27):6575-86. PubMed ID: 27314563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the Polymerization Kinetics of α/β-Tubulin by Osmolytes and Macromolecular Crowding.
    Schummel PH; Gao M; Winter R
    Chemphyschem; 2017 Jan; 18(2):189-197. PubMed ID: 27813294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the influence of natural cosolvents on the free energy and conformational landscape of filamentous actin and microtubules.
    Schummel PH; Jaworek MW; Rosin C; Högg J; Winter R
    Phys Chem Chem Phys; 2018 Nov; 20(45):28400-28411. PubMed ID: 30238109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of urea and trimethylamine N-oxide on the binding between actin molecules.
    Hatori K; Iwasaki T; Wada R
    Biophys Chem; 2014; 193-194():20-6. PubMed ID: 25086871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Insights into the Elongation Reaction of Actin Filaments as a Function of Temperature, Pressure, and Macromolecular Crowding.
    Gao M; Winter R
    Chemphyschem; 2015 Dec; 16(17):3681-6. PubMed ID: 26420566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of osmolytes on pressure-induced unfolding of proteins: a high-pressure SAXS study.
    Krywka C; Sternemann C; Paulus M; Tolan M; Royer C; Winter R
    Chemphyschem; 2008 Dec; 9(18):2809-15. PubMed ID: 18924198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroScale Thermophoresis (MST) for studying actin polymerization kinetics.
    Topf A; Franz P; Tsiavaliaris G
    Biotechniques; 2017 Oct; 63(4):187-190. PubMed ID: 29048271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The polymerization of actin: extent of polymerization under pressure, volume change of polymerization, and relaxation after temperature jumps.
    Matthews JN; Yim PB; Jacobs DT; Forbes JG; Peters ND; Greer SC
    J Chem Phys; 2005 Aug; 123(7):074904. PubMed ID: 16229617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic analysis of polymerization dynamics with individual actin filaments.
    Fujiwara I; Takahashi S; Tadakuma H; Funatsu T; Ishiwata S
    Nat Cell Biol; 2002 Sep; 4(9):666-73. PubMed ID: 12198494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined pressure and cosolvent effects on enzyme activity - a high-pressure stopped-flow kinetic study on α-chymotrypsin.
    Luong TQ; Winter R
    Phys Chem Chem Phys; 2015 Sep; 17(35):23273-8. PubMed ID: 26285002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic simulation of biological reactions, and its applications for studying actin polymerization.
    Ichikawa K; Suzuki T; Murata N
    Phys Biol; 2010 Nov; 7(4):046010. PubMed ID: 21119218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How depolymerization can promote polymerization: the case of actin and profilin.
    Yarmola EG; Bubb MR
    Bioessays; 2009 Nov; 31(11):1150-60. PubMed ID: 19795407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of actin DNase-I-binding loop in myosin subfragment 1-induced polymerization of G-actin: implications for the mechanism of polymerization.
    Wawro B; Khaitlina SY; Galińska-Rakoczy A; Strzelecka-Gołaszewska H
    Biophys J; 2005 Apr; 88(4):2883-96. PubMed ID: 15665122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cosolvent and Crowding Effects on the Temperature- and Pressure-Dependent Dissociation Process of the α/β-Tubulin Heterodimer.
    Schummel PH; Anders C; Jaworek MW; Winter R
    Chemphyschem; 2019 May; 20(9):1098-1109. PubMed ID: 30829441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymerization, three-dimensional structure and mechanical properties of Ddictyostelium versus rabbit muscle actin filaments.
    Steinmetz MO; Hoenger A; Stoffler D; Noegel AA; Aebi U; Schoenenberger CA
    J Mol Biol; 2000 Oct; 303(2):171-84. PubMed ID: 11023784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies on the effect of yeast cofilin on yeast actin polymerization.
    Du J; Frieden C
    Biochemistry; 1998 Sep; 37(38):13276-84. PubMed ID: 9748335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference in polymerization and steady-state dynamics of free and gelsolin-capped filaments formed by alpha- and beta-isoactins.
    Khaitlina S; Hinssen H
    Arch Biochem Biophys; 2008 Sep; 477(2):279-84. PubMed ID: 18619940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MARCKS-related protein binds to actin without significantly affecting actin polymerization or network structure. Myristoylated alanine-rich C kinase substrate.
    Wohnsland F; Steinmetz MO; Aebi U; Vergères G
    J Struct Biol; 2000 Sep; 131(3):217-24. PubMed ID: 11052894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.