BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 25704665)

  • 21. Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker.
    Mayfield SP; Kindle KL
    Proc Natl Acad Sci U S A; 1990 Mar; 87(6):2087-91. PubMed ID: 2179948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene.
    Zorin B; Lu Y; Sizova I; Hegemann P
    Gene; 2009 Mar; 432(1-2):91-6. PubMed ID: 19121376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-frequency nuclear transformation of Chlamydomonas reinhardtii.
    Kindle KL
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1228-32. PubMed ID: 2105499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker.
    Bateman JM; Purton S
    Mol Gen Genet; 2000 Apr; 263(3):404-10. PubMed ID: 10821174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Good News for Nuclear Transgene Expression in
    Schroda M
    Cells; 2019 Nov; 8(12):. PubMed ID: 31795196
    [No Abstract]   [Full Text] [Related]  

  • 26. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Gene Editing Technique in Xenotransplantation.
    Naeimi Kararoudi M; Hejazi SS; Elmas E; Hellström M; Naeimi Kararoudi M; Padma AM; Lee D; Dolatshad H
    Front Immunol; 2018; 9():1711. PubMed ID: 30233563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Building a multipurpose insertional mutant library for forward and reverse genetics in
    Cheng X; Liu G; Ke W; Zhao L; Lv B; Ma X; Xu N; Xia X; Deng X; Zheng C; Huang K
    Plant Methods; 2017; 13():36. PubMed ID: 28515773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic tools and techniques for Chlamydomonas reinhardtii.
    Mussgnug JH
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5407-18. PubMed ID: 26025017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome Editing by CRISPR/Cas9: A Game Change in the Genetic Manipulation of Protists.
    Lander N; Chiurillo MA; Docampo R
    J Eukaryot Microbiol; 2016 Sep; 63(5):679-90. PubMed ID: 27315329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient precision editing of endogenous
    Nievergelt AP; Diener DR; Bogdanova A; Brown T; Pigino G
    Cell Rep Methods; 2023 Aug; 3(8):100562. PubMed ID: 37671018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR-Cas9 system: A new-fangled dawn in gene editing.
    Gupta D; Bhattacharjee O; Mandal D; Sen MK; Dey D; Dasgupta A; Kazi TA; Gupta R; Sinharoy S; Acharya K; Chattopadhyay D; Ravichandiran V; Roy S; Ghosh D
    Life Sci; 2019 Sep; 232():116636. PubMed ID: 31295471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression levels of domestic cDNA cassettes integrated in the nuclear genomes of various Chlamydomonas reinhardtii strains.
    Kong F; Yamasaki T; Ohama T
    J Biosci Bioeng; 2014 May; 117(5):613-6. PubMed ID: 24342172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular tools for gene manipulation in filamentous fungi.
    Wang S; Chen H; Tang X; Zhang H; Chen W; Chen YQ
    Appl Microbiol Biotechnol; 2017 Nov; 101(22):8063-8075. PubMed ID: 28965220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase.
    Kindle KL; Schnell RA; Fernández E; Lefebvre PA
    J Cell Biol; 1989 Dec; 109(6 Pt 1):2589-601. PubMed ID: 2592399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii.
    Economou C; Wannathong T; Szaub J; Purton S
    Methods Mol Biol; 2014; 1132():401-11. PubMed ID: 24599870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Genetic Tools and Emerging Synthetic Biology Strategies to Increase Cellular Oil Content in Chlamydomonas reinhardtii.
    Kong F; Yamaoka Y; Ohama T; Lee Y; Li-Beisson Y
    Plant Cell Physiol; 2019 Jun; 60(6):1184-1196. PubMed ID: 30715500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.).
    Janga MR; Campbell LM; Rathore KS
    Plant Mol Biol; 2017 Jul; 94(4-5):349-360. PubMed ID: 28258551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.