These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts. Wang Y; Bao J; Wu Q; Zhou Y; Li Y; Wu X; Shi Y; Li L; Bu H Xenotransplantation; 2015; 22(1):48-61. PubMed ID: 25291435 [TBL] [Abstract][Full Text] [Related]
43. [Reconstruction of three different kinds of tympanic membrane in vitro by tissue engineering technique]. Deng Z; Tian Y; Wang J; Qiu J; Liu Y; Zhao Y; Jin Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Jan; 22(1):88-91. PubMed ID: 18361247 [TBL] [Abstract][Full Text] [Related]
44. [Preliminary study on outcome of xenogeneic (porcine) acellular dermal matrix in vivo]. Liu Q; Feng R; Meng AH; He LX; Yang HM; Chai JK Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2006 Jan; 18(1):49-50. PubMed ID: 16464389 [TBL] [Abstract][Full Text] [Related]
45. Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study. Ferrando PM; Balmativola D; Cambieri I; Scalzo MS; Bergallo M; Annaratone L; Casarin S; Fumagalli M; Stella M; Sapino A; Castagnoli C PLoS One; 2016; 11(2):e0149124. PubMed ID: 26918526 [TBL] [Abstract][Full Text] [Related]
47. [Preparation of porcine acellular dermal matrix by low concentration of trypsin digestion and repeated freeze-thaw cycles]. Tan Q; Zou ZT; Ning GS; Lin ZH; Zhou HR; Liang ZW; Chen X; Wu JM Zhonghua Shao Shang Za Zhi; 2004 Dec; 20(6):354-6. PubMed ID: 15730686 [TBL] [Abstract][Full Text] [Related]
48. [Preliminary study on tissue-engineered cartilage with human dermal fibroblasts co-cultured with porcine chondrocytes in vitro]. Liu X; Zhou GD; Liu W; Cao YL Zhonghua Zheng Xing Wai Ke Za Zhi; 2009 Nov; 25(6):447-51. PubMed ID: 20209938 [TBL] [Abstract][Full Text] [Related]
49. Own Experience From The Use Of A Substitute Of An Allogeneic Acellular Dermal Matrix Revitalized With In Vitro Cultured Skin Cells In Clinical Practice. Łabuś W; Kawecki M; Glik J; Maj M; Kitala D; Misiuga M; Klama-Baryła A; Kraut M; Nowak M Pol Przegl Chir; 2015 Oct; 87(10):513-21. PubMed ID: 26812752 [TBL] [Abstract][Full Text] [Related]
50. Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents. Boehnke K; Mirancea N; Pavesio A; Fusenig NE; Boukamp P; Stark HJ Eur J Cell Biol; 2007 Dec; 86(11-12):731-46. PubMed ID: 17292509 [TBL] [Abstract][Full Text] [Related]
51. The value of ultrahigh resolution OCT in dermatology - delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs. Israelsen NM; Maria M; Mogensen M; Bojesen S; Jensen M; Haedersdal M; Podoleanu A; Bang O Biomed Opt Express; 2018 May; 9(5):2240-2265. PubMed ID: 29760984 [TBL] [Abstract][Full Text] [Related]
52. Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology. Gambichler T; Boms S; Stücker M; Moussa G; Kreuter A; Sand M; Sand D; Altmeyer P; Hoffmann K Arch Dermatol Res; 2005 Nov; 297(5):218-25. PubMed ID: 16215762 [TBL] [Abstract][Full Text] [Related]
53. Development of an acellular tumor extracellular matrix as a three-dimensional scaffold for tumor engineering. Lü WD; Zhang L; Wu CL; Liu ZG; Lei GY; Liu J; Gao W; Hu YR PLoS One; 2014; 9(7):e103672. PubMed ID: 25072252 [TBL] [Abstract][Full Text] [Related]
54. Dermis mechanical behaviour after different cell removal treatments. Terzini M; Bignardi C; Castagnoli C; Cambieri I; Zanetti EM; Audenino AL Med Eng Phys; 2016 Sep; 38(9):862-9. PubMed ID: 26997564 [TBL] [Abstract][Full Text] [Related]
55. Dermal epidermal junction detection for full-field optical coherence tomography data of human skin by deep learning. Chou HY; Huang SL; Tjiu JW; Chen HH Comput Med Imaging Graph; 2021 Jan; 87():101833. PubMed ID: 33338907 [TBL] [Abstract][Full Text] [Related]
56. Microencapsulated VEGF gene-modified umbilical cord mesenchymal stromal cells promote the vascularization of tissue-engineered dermis: an experimental study. Han Y; Tao R; Han Y; Sun T; Chai J; Xu G; Liu J Cytotherapy; 2014 Feb; 16(2):160-9. PubMed ID: 24438897 [TBL] [Abstract][Full Text] [Related]
57. Microneedle fractional radiofrequency-induced micropores evaluated by in vivo reflectance confocal microscopy, optical coherence tomography, and histology. Hansen FS; Wenande E; Haedersdal M; Fuchs CSK Skin Res Technol; 2019 Jul; 25(4):482-488. PubMed ID: 30659657 [TBL] [Abstract][Full Text] [Related]
58. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography. Boone M; Suppa M; Miyamoto M; Marneffe A; Jemec G; Del Marmol V Biomed Opt Express; 2016 Jun; 7(6):2269-84. PubMed ID: 27375943 [TBL] [Abstract][Full Text] [Related]
59. Line-field confocal optical coherence tomography as a tool for three-dimensional in vivo quantification of healthy epidermis: A pilot study. Chauvel-Picard J; Bérot V; Tognetti L; Orte Cano C; Fontaine M; Lenoir C; Pérez-Anker J; Puig S; Dubois A; Forestier S; Monnier J; Jdid R; Cazorla G; Pedrazzani M; Sanchez A; Fischman S; Rubegni P; Del Marmol V; Malvehy J; Cinotti E; Perrot JL; Suppa M J Biophotonics; 2022 Feb; 15(2):e202100236. PubMed ID: 34608756 [TBL] [Abstract][Full Text] [Related]
60. Engineering three-dimensional cartilage- and bone-like tissues using human dermal fibroblasts and macroporous gelatine microcarriers. Sommar P; Pettersson S; Ness C; Johnson H; Kratz G; Junker JP J Plast Reconstr Aesthet Surg; 2010 Jun; 63(6):1036-46. PubMed ID: 19329368 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]