These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 25704814)
1. A mitochondria-specific isoform of FASTK is present in mitochondrial RNA granules and regulates gene expression and function. Jourdain AA; Koppen M; Rodley CD; Maundrell K; Gueguen N; Reynier P; Guaras AM; Enriquez JA; Anderson P; Simarro M; Martinou JC Cell Rep; 2015 Feb; 10(7):1110-21. PubMed ID: 25704814 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial Complex I Dysfunction and Peripheral Chemoreflex Sensitivity in a FASTK-Deficient Mice Model. Gomez-Niño A; Docio I; Prieto-Lloret J; Simarro M; de la Fuente MA; Rocher A Adv Exp Med Biol; 2018; 1071():51-59. PubMed ID: 30357733 [TBL] [Abstract][Full Text] [Related]
3. The Mitochondrial Isoform of FASTK Modulates Nonopsonic Phagocytosis of Bacteria by Macrophages via Regulation of Respiratory Complex I. García Del Río A; Delmiro A; Martín MA; Cantalapiedra R; Carretero R; Durántez C; Menegotto F; Morán M; Serrano-Lorenzo P; De la Fuente MA; Orduña A; Simarro M J Immunol; 2018 Nov; 201(10):2977-2985. PubMed ID: 30322967 [TBL] [Abstract][Full Text] [Related]
4. FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation. Popow J; Alleaume AM; Curk T; Schwarzl T; Sauer S; Hentze MW RNA; 2015 Nov; 21(11):1873-84. PubMed ID: 26370583 [TBL] [Abstract][Full Text] [Related]
5. Role of FAST Kinase Domains 3 (FASTKD3) in Post-transcriptional Regulation of Mitochondrial Gene Expression. Boehm E; Zornoza M; Jourdain AA; Delmiro Magdalena A; García-Consuegra I; Torres Merino R; Orduña A; Martín MA; Martinou JC; De la Fuente MA; Simarro M J Biol Chem; 2016 Dec; 291(50):25877-25887. PubMed ID: 27789713 [TBL] [Abstract][Full Text] [Related]
6. The yeast nuclear gene DSS1, which codes for a putative RNase II, is necessary for the function of the mitochondrial degradosome in processing and turnover of RNA. Dziembowski A; Malewicz M; Minczuk M; Golik P; Dmochowska A; Stepien PP Mol Gen Genet; 1998 Oct; 260(1):108-14. PubMed ID: 9829834 [TBL] [Abstract][Full Text] [Related]
8. Assays of the helicase, ATPase, and exoribonuclease activities of the yeast mitochondrial degradosome. Malecki M; Stepien PP; Golik P Methods Mol Biol; 2010; 587():339-58. PubMed ID: 20225161 [TBL] [Abstract][Full Text] [Related]
9. Genetic and biochemical approaches for analysis of mitochondrial degradosome from Saccharomyces cerevisiae. Dziembowski A; Stepien PP Methods Enzymol; 2001; 342():367-78. PubMed ID: 11586909 [No Abstract] [Full Text] [Related]
10. The Escherichia coli RNA degradosome: structure, function and relationship in other ribonucleolytic multienzyme complexes. Carpousis AJ Biochem Soc Trans; 2002 Apr; 30(2):150-5. PubMed ID: 12035760 [TBL] [Abstract][Full Text] [Related]
11. Cyanobacterial RNA Helicase CrhR Localizes to the Thylakoid Membrane Region and Cosediments with Degradosome and Polysome Complexes in Synechocystis sp. Strain PCC 6803. Rosana AR; Whitford DS; Fahlman RP; Owttrim GW J Bacteriol; 2016 Aug; 198(15):2089-99. PubMed ID: 27215789 [TBL] [Abstract][Full Text] [Related]
12. Evidence for a degradosome-like complex in the mitochondria of Trypanosoma brucei. Mattiacio JL; Read LK FEBS Lett; 2009 Jul; 583(14):2333-8. PubMed ID: 19540236 [TBL] [Abstract][Full Text] [Related]
13. RNA degradation in human mitochondria: the journey is not finished. Santonoceto G; Jurkiewicz A; Szczesny RJ Hum Mol Genet; 2024 May; 33(R1):R26-R33. PubMed ID: 38779774 [TBL] [Abstract][Full Text] [Related]
14. Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Gao J; Lee K; Zhao M; Qiu J; Zhan X; Saxena A; Moore CJ; Cohen SN; Georgiou G Mol Microbiol; 2006 Jul; 61(2):394-406. PubMed ID: 16771842 [TBL] [Abstract][Full Text] [Related]
15. Preferential cleavage of degradative intermediates of rpsT mRNA by the Escherichia coli RNA degradosome. Spickler C; Stronge V; Mackie GA J Bacteriol; 2001 Feb; 183(3):1106-9. PubMed ID: 11208812 [TBL] [Abstract][Full Text] [Related]
16. In vitro reconstitution and characterization of the yeast mitochondrial degradosome complex unravels tight functional interdependence. Malecki M; Jedrzejczak R; Stepien PP; Golik P J Mol Biol; 2007 Sep; 372(1):23-36. PubMed ID: 17658549 [TBL] [Abstract][Full Text] [Related]
17. From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome. Górna MW; Carpousis AJ; Luisi BF Q Rev Biophys; 2012 May; 45(2):105-45. PubMed ID: 22169164 [TBL] [Abstract][Full Text] [Related]
18. Bacterial RNA Degradosomes: Molecular Machines under Tight Control. Tejada-Arranz A; de Crécy-Lagard V; de Reuse H Trends Biochem Sci; 2020 Jan; 45(1):42-57. PubMed ID: 31679841 [TBL] [Abstract][Full Text] [Related]
19. Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci. Borowski LS; Dziembowski A; Hejnowicz MS; Stepien PP; Szczesny RJ Nucleic Acids Res; 2013 Jan; 41(2):1223-40. PubMed ID: 23221631 [TBL] [Abstract][Full Text] [Related]
20. Accelerated FASTK mRNA degradation induced by oxidative stress is responsible for the destroyed myocardial mitochondrial gene expression and respiratory function in alcoholic cardiomyopathy. Zhang F; Wang K; Zhang S; Li J; Fan R; Chen X; Pei J Redox Biol; 2021 Jan; 38():101778. PubMed ID: 33197770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]