These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25704821)

  • 1. A cell-signaling network temporally resolves specific versus promiscuous phosphorylation.
    Kanshin E; Bergeron-Sandoval LP; Isik SS; Thibault P; Michnick SW
    Cell Rep; 2015 Feb; 10(7):1202-14. PubMed ID: 25704821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning of Global Phosphoproteomic Profiles Enables Discrimination of Direct versus Indirect Kinase Substrates.
    Kanshin E; Giguère S; Jing C; Tyers M; Thibault P
    Mol Cell Proteomics; 2017 May; 16(5):786-798. PubMed ID: 28265048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoproteome dynamics of Saccharomyces cerevisiae under heat shock and cold stress.
    Kanshin E; Kubiniok P; Thattikota Y; D'Amours D; Thibault P
    Mol Syst Biol; 2015 Jun; 11(6):813. PubMed ID: 26040289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delineating functional principles of the bow tie structure of a kinase-phosphatase network in the budding yeast.
    Abd-Rabbo D; Michnick SW
    BMC Syst Biol; 2017 Mar; 11(1):38. PubMed ID: 28298210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When the stress of your environment makes you go HOG wild.
    Westfall PJ; Ballon DR; Thorner J
    Science; 2004 Nov; 306(5701):1511-2. PubMed ID: 15567851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoproteomic Approaches for Identifying Phosphatase and Kinase Substrates.
    DeMarco AG; Hall MC
    Molecules; 2023 Apr; 28(9):. PubMed ID: 37175085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sample Collection Method Bias Effects in Quantitative Phosphoproteomics.
    Kanshin E; Tyers M; Thibault P
    J Proteome Res; 2015 Jul; 14(7):2998-3004. PubMed ID: 26040406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial protein phosphorylation in yeast revisited.
    Frankovsky J; Vozáriková V; Nosek J; Tomáška Ľ
    Mitochondrion; 2021 Mar; 57():148-162. PubMed ID: 33412333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global analysis of the yeast osmotic stress response by quantitative proteomics.
    Soufi B; Kelstrup CD; Stoehr G; Fröhlich F; Walther TC; Olsen JV
    Mol Biosyst; 2009 Nov; 5(11):1337-46. PubMed ID: 19823750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatase and Kinase Substrate Specificity Profiling with Pooled Synthetic Peptides and Mass Spectrometry.
    DeMarco AG; Pascuzzi PE; Tao WA; Hall MC
    Methods Mol Biol; 2021; 2329():51-70. PubMed ID: 34085215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium-induced activation of high osmolarity glycerol pathway through its Sln1 branch is dependent on the MAP kinase kinase kinase Ssk2, but not its paralog Ssk22, in budding yeast.
    Jiang L; Cao C; Zhang L; Lin W; Xia J; Xu H; Zhang Y
    FEMS Yeast Res; 2014 Dec; 14(8):1263-72. PubMed ID: 25331360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Untargeted metabolomics unravels functionalities of phosphorylation sites in Saccharomyces cerevisiae.
    Raguz Nakic Z; Seisenbacher G; Posas F; Sauer U
    BMC Syst Biol; 2016 Nov; 10(1):104. PubMed ID: 27846849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit.
    Bouchoux C; Uhlmann F
    Cell; 2011 Nov; 147(4):803-14. PubMed ID: 22078879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry.
    Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE
    Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation.
    Wu CJ; Chen YW; Tai JH; Chen SH
    J Proteome Res; 2011 Mar; 10(3):1088-97. PubMed ID: 21210654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway.
    Brewster JL; Gustin MC
    Yeast; 1994 Apr; 10(4):425-39. PubMed ID: 7941729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis.
    Oliveira AP; Ludwig C; Zampieri M; Weisser H; Aebersold R; Sauer U
    Sci Signal; 2015 Apr; 8(374):rs4. PubMed ID: 25921291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Enrichment of Cysteine-Containing Phosphopeptides for Subphosphoproteome Analysis.
    Dong M; Bian Y; Dong J; Wang K; Liu Z; Qin H; Ye M; Zou H
    J Proteome Res; 2015 Dec; 14(12):5341-7. PubMed ID: 26552605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.
    Daub H; Olsen JV; Bairlein M; Gnad F; Oppermann FS; Körner R; Greff Z; Kéri G; Stemmann O; Mann M
    Mol Cell; 2008 Aug; 31(3):438-48. PubMed ID: 18691976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of conventional quantitative and phospho-proteomics reveals new elements in activated Jurkat T-cell receptor pathway maintenance.
    Jouy F; Müller SA; Wagner J; Otto W; von Bergen M; Tomm JM
    Proteomics; 2015 Jan; 15(1):25-33. PubMed ID: 25348772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.