These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 25704873)
1. Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Briscoe J; Marinovic A; Sevilla M; Dunn S; Titirici M Angew Chem Int Ed Engl; 2015 Apr; 54(15):4463-8. PubMed ID: 25704873 [TBL] [Abstract][Full Text] [Related]
2. Carbon fiber/Co9S8 nanotube arrays hybrid structures for flexible quantum dot-sensitized solar cells. Guo W; Chen C; Ye M; Lv M; Lin C Nanoscale; 2014 Apr; 6(7):3656-63. PubMed ID: 24562374 [TBL] [Abstract][Full Text] [Related]
3. ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells. Li C; Yang L; Xiao J; Wu YC; Søndergaard M; Luo Y; Li D; Meng Q; Iversen BB Phys Chem Chem Phys; 2013 Jun; 15(22):8710-5. PubMed ID: 23639947 [TBL] [Abstract][Full Text] [Related]
4. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Bi D; Boschloo G; Schwarzmüller S; Yang L; Johansson EM; Hagfeldt A Nanoscale; 2013 Dec; 5(23):11686-91. PubMed ID: 24100947 [TBL] [Abstract][Full Text] [Related]
5. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Jean J; Chang S; Brown PR; Cheng JJ; Rekemeyer PH; Bawendi MG; Gradečak S; Bulović V Adv Mater; 2013 May; 25(20):2790-6. PubMed ID: 23440957 [TBL] [Abstract][Full Text] [Related]
6. Prolonged fluorescence lifetime of carbon quantum dots by combining with hydroxyapatite nanorods for bio-applications. Ma B; Zhang S; Liu R; Qiu J; Zhao L; Wang S; Li J; Sang Y; Jiang H; Liu H Nanoscale; 2017 Feb; 9(6):2162-2171. PubMed ID: 27849086 [TBL] [Abstract][Full Text] [Related]
7. High efficiency solar cells tailored using biomass-converted graded carbon quantum dots. Liu L; Yu X; Yi Z; Chi F; Wang H; Yuan Y; Li D; Xu K; Zhang X Nanoscale; 2019 Aug; 11(32):15083-15090. PubMed ID: 31380538 [TBL] [Abstract][Full Text] [Related]
8. Carbon-Nanodot Solar Cells from Renewable Precursors. Marinovic A; Kiat LS; Dunn S; Titirici MM; Briscoe J ChemSusChem; 2017 Mar; 10(5):1004-1013. PubMed ID: 28107609 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of Carbon Quantum Dots with Special Reference to Biomass as a Source - A Review. Thangaraj B; Solomon PR; Ranganathan S Curr Pharm Des; 2019; 25(13):1455-1476. PubMed ID: 31258064 [TBL] [Abstract][Full Text] [Related]
10. Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake. Zhou J; Deng W; Wang Y; Cao X; Chen J; Wang Q; Xu W; Du P; Yu Q; Chen J; Spector M; Yu J; Xu X Acta Biomater; 2016 Sep; 42():209-219. PubMed ID: 27321673 [TBL] [Abstract][Full Text] [Related]
11. Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials. Saeed Sel-S; El-Molla MM; Hassan ML; Bakir E; Abdel-Mottaleb MM; Abdel-Mottaleb MS Carbohydr Polym; 2014 Jan; 99():817-24. PubMed ID: 24274574 [TBL] [Abstract][Full Text] [Related]
12. Quantum dot synthesis from waste biomass and its applications in energy and bioremediation. Ahuja V; Bhatt AK; Varjani S; Choi KY; Kim SH; Yang YH; Bhatia SK Chemosphere; 2022 Apr; 293():133564. PubMed ID: 35007612 [TBL] [Abstract][Full Text] [Related]
13. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. Huang H; Pan L; Lim CK; Gong H; Guo J; Tse MS; Tan OK Small; 2013 Sep; 9(18):3153-60. PubMed ID: 23606243 [TBL] [Abstract][Full Text] [Related]
14. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Tian J; Zhang Q; Zhang L; Gao R; Shen L; Zhang S; Qu X; Cao G Nanoscale; 2013 Feb; 5(3):936-43. PubMed ID: 23166058 [TBL] [Abstract][Full Text] [Related]
15. Efficient hybrid solar cells using PbS(x)Se(1-x) quantum dots and nanorods for broad-range photon absorption and well-assembled charge transfer networks. Nam M; Kim S; Kim S; Kim SW; Lee K Nanoscale; 2013 Sep; 5(17):8202-9. PubMed ID: 23831941 [TBL] [Abstract][Full Text] [Related]
16. Surface-Tunable Bioluminescence Resonance Energy Transfer via Geometry-Controlled ZnO Nanorod Coordination. Lim JH; Park GC; Lee SM; Lee JH; Lim B; Hwang SM; Kim JH; Park H; Joo J; Kim YP Small; 2015 Jul; 11(28):3469-75. PubMed ID: 25802061 [TBL] [Abstract][Full Text] [Related]
17. A type of novel fluorescent magnetic carbon quantum dots for cells imaging and detection. Su X; Xu Y; Che Y; Liao X; Jiang Y J Biomed Mater Res A; 2015 Dec; 103(12):3956-64. PubMed ID: 25847261 [TBL] [Abstract][Full Text] [Related]
18. Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Xiang Y; Liu X; Mao C; Liu X; Cui Z; Yang X; Yeung KWK; Zheng Y; Wu S Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():214-224. PubMed ID: 29407150 [TBL] [Abstract][Full Text] [Related]
19. An energy-harvesting scheme employing CuGaSe2 quantum dot-modified ZnO buffer layers for drastic conversion efficiency enhancement in inorganic-organic hybrid solar cells. Ho CR; Tsai ML; Jhuo HJ; Lien DH; Lin CA; Tsai SH; Wei TC; Huang KP; Chen SA; He JH Nanoscale; 2013 Jul; 5(14):6350-5. PubMed ID: 23455444 [TBL] [Abstract][Full Text] [Related]
20. Improved performance of nanowire-quantum-dot-polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials. Nadarajah A; Smith T; Könenkamp R Nanotechnology; 2012 Dec; 23(48):485403. PubMed ID: 23129022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]