BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

896 related articles for article (PubMed ID: 25704916)

  • 1. The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer.
    Li Z; Wang Y; Zhu Y; Yuan C; Wang D; Zhang W; Qi B; Qiu J; Song X; Ye J; Wu H; Jiang H; Liu L; Zhang Y; Song LN; Yang J; Cheng J
    Mol Oncol; 2015 Jun; 9(6):1091-105. PubMed ID: 25704916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Hippo effector TAZ promotes cancer stemness by transcriptional activation of SOX2 in head neck squamous cell carcinoma.
    Li J; Li Z; Wu Y; Wang Y; Wang D; Zhang W; Yuan H; Ye J; Song X; Yang J; Jiang H; Cheng J
    Cell Death Dis; 2019 Aug; 10(8):603. PubMed ID: 31399556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of miR-204 enables oral squamous cell carcinomas to promote cancer stemness, EMT traits, and lymph node metastasis.
    Yu CC; Chen PN; Peng CY; Yu CH; Chou MY
    Oncotarget; 2016 Apr; 7(15):20180-92. PubMed ID: 26933999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression.
    Xie D; Cui J; Xia T; Jia Z; Wang L; Wei W; Zhu A; Gao Y; Xie K; Quan M
    Oncotarget; 2015 Nov; 6(34):35949-63. PubMed ID: 26416426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells.
    Cordenonsi M; Zanconato F; Azzolin L; Forcato M; Rosato A; Frasson C; Inui M; Montagner M; Parenti AR; Poletti A; Daidone MG; Dupont S; Basso G; Bicciato S; Piccolo S
    Cell; 2011 Nov; 147(4):759-72. PubMed ID: 22078877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD47-SIRPα Signaling Induces Epithelial-Mesenchymal Transition and Cancer Stemness and Links to a Poor Prognosis in Patients with Oral Squamous Cell Carcinoma.
    Pai S; Bamodu OA; Lin YK; Lin CS; Chu PY; Chien MH; Wang LS; Hsiao M; Yeh CT; Tsai JT
    Cells; 2019 Dec; 8(12):. PubMed ID: 31861233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DYRK1A is required for maintenance of cancer stemness, contributing to tumorigenic potential in oral/oropharyngeal squamous cell carcinoma.
    Martin CE; Nguyen A; Kang MK; Kim RH; Park NH; Shin KH
    Exp Cell Res; 2021 Aug; 405(1):112656. PubMed ID: 34033760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GLI3 knockdown decreases stemness, cell proliferation and invasion in oral squamous cell carcinoma.
    Rodrigues MFSD; Miguita L; De Andrade NP; Heguedusch D; Rodini CO; Moyses RA; Toporcov TN; Gama RR; Tajara EE; Nunes FD
    Int J Oncol; 2018 Dec; 53(6):2458-2472. PubMed ID: 30272273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of CD133 overexpression on the epithelial-to-mesenchymal transition in oral cancer cell lines.
    Moon Y; Kim D; Sohn H; Lim W
    Clin Exp Metastasis; 2016 Jun; 33(5):487-96. PubMed ID: 27137188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EGFR inhibitors prevent induction of cancer stem-like cells in esophageal squamous cell carcinoma by suppressing epithelial-mesenchymal transition.
    Sato F; Kubota Y; Natsuizaka M; Maehara O; Hatanaka Y; Marukawa K; Terashita K; Suda G; Ohnishi S; Shimizu Y; Komatsu Y; Ohashi S; Kagawa S; Kinugasa H; Whelan KA; Nakagawa H; Sakamoto N
    Cancer Biol Ther; 2015; 16(6):933-40. PubMed ID: 25897987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-10a promotes epithelial-to-mesenchymal transition and stemness maintenance of pancreatic cancer stem cells via upregulating the Hippo signaling pathway through WWC2 inhibition.
    Wang C; Yin W; Liu H
    J Cell Biochem; 2020 Nov; 121(11):4505-4521. PubMed ID: 32542845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of cancer stem-like and epithelial-mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: reversal by targeting SNAIL.
    Yu CC; Chang YC
    Toxicol Appl Pharmacol; 2013 Feb; 266(3):459-69. PubMed ID: 23219715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The T-box transcription factor Brachyury regulates epithelial-mesenchymal transition in association with cancer stem-like cells in adenoid cystic carcinoma cells.
    Shimoda M; Sugiura T; Imajyo I; Ishii K; Chigita S; Seki K; Kobayashi Y; Shirasuna K
    BMC Cancer; 2012 Aug; 12():377. PubMed ID: 22931165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VEGF-neuropilin-2 signaling promotes stem-like traits in breast cancer cells by TAZ-mediated repression of the Rac GAP β2-chimaerin.
    Elaimy AL; Guru S; Chang C; Ou J; Amante JJ; Zhu LJ; Goel HL; Mercurio AM
    Sci Signal; 2018 May; 11(528):. PubMed ID: 29717062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuropilin-1 promotes epithelial-to-mesenchymal transition by stimulating nuclear factor-kappa B and is associated with poor prognosis in human oral squamous cell carcinoma.
    Chu W; Song X; Yang X; Ma L; Zhu J; He M; Wang Z; Wu Y
    PLoS One; 2014; 9(7):e101931. PubMed ID: 24999732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Mechanisms Associated with ROR1-Mediated Drug Resistance: Crosstalk with Hippo-YAP/TAZ and BMI-1 Pathways.
    Karvonen H; Barker H; Kaleva L; Niininen W; Ungureanu D
    Cells; 2019 Aug; 8(8):. PubMed ID: 31382410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Downregulation of MiR-31 stimulates expression of LATS2 via the hippo pathway and promotes epithelial-mesenchymal transition in esophageal squamous cell carcinoma.
    Gao Y; Yi J; Zhang K; Bai F; Feng B; Wang R; Chu X; Chen L; Song H
    J Exp Clin Cancer Res; 2017 Nov; 36(1):161. PubMed ID: 29145896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of transcriptional coactivator TAZ in gliomas.
    Li W; Dong S; Wei W; Wang G; Zhang A; Pu P; Jia Z
    Oncotarget; 2016 Dec; 7(50):82686-82699. PubMed ID: 27764783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphodiesterase 5/protein kinase G signal governs stemness of prostate cancer stem cells through Hippo pathway.
    Liu N; Mei L; Fan X; Tang C; Ji X; Hu X; Shi W; Qian Y; Hussain M; Wu J; Wang C; Lin S; Wu X
    Cancer Lett; 2016 Aug; 378(1):38-50. PubMed ID: 27179930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Hippo Pathway as Drug Targets in Cancer Therapy and Regenerative Medicine.
    Nagashima S; Bao Y; Hata Y
    Curr Drug Targets; 2017; 18(4):447-454. PubMed ID: 26758663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.