These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25705055)

  • 1. Spatial and temporal variation in sponge spicule patches at Station M, northeast Pacific.
    Laguionie-Marchais C; Kuhnz LA; Huffard CL; Ruhl HA; Smith KL
    Mar Biol; 2015; 162(3):617-624. PubMed ID: 25705055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions.
    Uriz MJ; Turon X; Becerro MA; Agell G
    Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The terminology of sponge spicules.
    Łukowiak M; Van Soest R; Klautau M; Pérez T; Pisera A; Tabachnick K
    J Morphol; 2022 Dec; 283(12):1517-1545. PubMed ID: 36208470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Habitat variability and faunal zonation at the Ægir Ridge, a canyon-like structure in the deep Norwegian Sea.
    Brix S; Kaiser S; Lörz AN; Le Saout M; Schumacher M; Bonk F; Egilsdottir H; Olafsdottir SH; Tandberg AHS; Taylor J; Tewes S; Xavier JR; Linse K
    PeerJ; 2022; 10():e13394. PubMed ID: 35726260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of submarine power transmission cables on a glass sponge reef and associated megafaunal community.
    Dunham A; Pegg JR; Carolsfeld W; Davies S; Murfitt I; Boutillier J
    Mar Environ Res; 2015 Jun; 107():50-60. PubMed ID: 25884466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiculogenesis in the siliceous sponge Lubomirskia baicalensis studied with fluorescent staining.
    Annenkov VV; Danilovtseva EN
    J Struct Biol; 2016 Apr; 194(1):29-37. PubMed ID: 26821342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The unique invention of the siliceous sponges: their enzymatically made bio-silica skeleton.
    Müller WE; Wang X; Chen A; Hu S; Gan L; Schröder HC; Schloßmacher U; Wiens M
    Prog Mol Subcell Biol; 2011; 52():251-81. PubMed ID: 21877269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bathydorus laniger and Docosaccus maculatus (Lyssacinosida; Hexactinellida): Two new species of glass sponge from the abyssal eastern North Pacific Ocean.
    Kahn AS; Geller JB; Reiswig HM; Smith KL
    Zootaxa; 2013; 3646():386-400. PubMed ID: 26213771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comments on a skeleton design paradigm for a demosponge.
    Aluma Y; Ilan M; Sherman D
    J Struct Biol; 2011 Sep; 175(3):415-24. PubMed ID: 21605685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensionally preserved soft tissues and calcareous hexactins in a Silurian sponge: implications for early sponge evolution.
    Nadhira A; Sutton MD; Botting JP; Muir LA; Gueriau P; King A; Briggs DEG; Siveter DJ; Siveter DJ
    R Soc Open Sci; 2019 Jul; 6(7):190911. PubMed ID: 31417767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Middle and Late Cambrian sponge spicules from Hunan, China.
    Xiping D; Knoll AH
    J Paleontol; 1996 Mar; 70(2):173-84. PubMed ID: 11539394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of spicule production in the marine sponge Hymeniacidon perlevis during in vitro cell culture and seasonal development in the field.
    Cao X; Fu W; Yu X; Zhang W
    Cell Tissue Res; 2007 Sep; 329(3):595-608. PubMed ID: 17593397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the structure and morphogenesis of the giant basal spicule of the glass sponge Monorhaphis chuni.
    Pisera A; Łukowiak M; Masse S; Tabachnick K; Fromont J; Ehrlich H; Bertolino M
    Front Zool; 2021 Nov; 18(1):58. PubMed ID: 34749755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals.
    Sethmann I; Wörheide G
    Micron; 2008; 39(3):209-28. PubMed ID: 17360189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abundance and size distribution dynamics of abyssal epibenthic megafauna in the northeast Pacific.
    Ruhl HA
    Ecology; 2007 May; 88(5):1250-62. PubMed ID: 17536411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis.
    Mohri K; Nakatsukasa M; Masuda Y; Agata K; Funayama N
    Dev Dyn; 2008 Oct; 237(10):3024-39. PubMed ID: 18816843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The largest Bio-Silica Structure on Earth: The Giant Basal Spicule from the Deep-Sea Glass Sponge Monorhaphis chuni.
    Wang X; Gan L; Jochum KP; Schröder HC; Müller WE
    Evid Based Complement Alternat Med; 2011; 2011():540987. PubMed ID: 21941585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ observation of sponge trails suggests common sponge locomotion in the deep central Arctic.
    Morganti TM; Purser A; Rapp HT; German CR; Jakuba MV; Hehemann L; Blendl J; Slaby BM; Boetius A
    Curr Biol; 2021 Apr; 31(8):R368-R370. PubMed ID: 33905688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott.
    Botting JP; Butterfield NJ
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1554-9. PubMed ID: 15665105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Habitat types and megabenthos composition from three sponge-dominated high-Arctic seamounts.
    Stratmann T; Simon-Lledó E; Morganti TM; de Kluijver A; Vedenin A; Purser A
    Sci Rep; 2022 Nov; 12(1):20610. PubMed ID: 36446839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.