These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 25705325)
1. MULTI-MODAL DATA FUSION SCHEMES FOR INTEGRATED CLASSIFICATION OF IMAGING AND NON-IMAGING BIOMEDICAL DATA. Tiwari P; Viswanath S; Lee G; Madabhushi A Proc IEEE Int Symp Biomed Imaging; 2011; 2011():165-168. PubMed ID: 25705325 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Multi-Protocol Analysis via Intelligent Supervised Embedding (EMPrAvISE): Detecting Prostate Cancer on Multi-Parametric MRI. Viswanath S; Bloch BN; Chappelow J; Patel P; Rofsky N; Lenkinski R; Genega E; Madabhushi A Proc SPIE Int Soc Opt Eng; 2011 Mar; 7963():79630U. PubMed ID: 25301991 [TBL] [Abstract][Full Text] [Related]
3. Semi supervised multi kernel (SeSMiK) graph embedding: identifying aggressive prostate cancer via magnetic resonance imaging and spectroscopy. Tiwari P; Kurhanewicz J; Rosen M; Madabhushi A Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):666-73. PubMed ID: 20879458 [TBL] [Abstract][Full Text] [Related]
4. Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS. Tiwari P; Kurhanewicz J; Madabhushi A Med Image Anal; 2013 Feb; 17(2):219-35. PubMed ID: 23294985 [TBL] [Abstract][Full Text] [Related]
5. Dimensionality reduction-based fusion approaches for imaging and non-imaging biomedical data: concepts, workflow, and use-cases. Viswanath SE; Tiwari P; Lee G; Madabhushi A; BMC Med Imaging; 2017 Jan; 17(1):2. PubMed ID: 28056889 [TBL] [Abstract][Full Text] [Related]
6. Integrating Structural and Functional Imaging for Computer Assisted Detection of Prostate Cancer on Multi-Protocol Viswanath S; Bloch BN; Rosen M; Chappelow J; Toth R; Rofsky N; Lenkinski R; Genega E; Kalyanpur A; Madabhushi A Proc SPIE Int Soc Opt Eng; 2009 Feb; 7260():72603I. PubMed ID: 25301989 [TBL] [Abstract][Full Text] [Related]
7. Supervised regularized canonical correlation analysis: integrating histologic and proteomic measurements for predicting biochemical recurrence following prostate surgery. Golugula A; Lee G; Master SR; Feldman MD; Tomaszewski JE; Speicher DW; Madabhushi A BMC Bioinformatics; 2011 Dec; 12():483. PubMed ID: 22182303 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided prognosis: predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data. Madabhushi A; Agner S; Basavanhally A; Doyle S; Lee G Comput Med Imaging Graph; 2011; 35(7-8):506-14. PubMed ID: 21333490 [TBL] [Abstract][Full Text] [Related]
9. Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data. Viswanath S; Madabhushi A BMC Bioinformatics; 2012 Feb; 13():26. PubMed ID: 22316103 [TBL] [Abstract][Full Text] [Related]
10. Supervised regularized canonical correlation analysis: integrating histologic and proteomic data for predicting biochemical failures. Golugula A; Lee G; Master SR; Feldman MD; Tomaszewski JE; Madabhushi A Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6434-7. PubMed ID: 22255811 [TBL] [Abstract][Full Text] [Related]
11. Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study. Viswanath SE; Chirra PV; Yim MC; Rofsky NM; Purysko AS; Rosen MA; Bloch BN; Madabhushi A BMC Med Imaging; 2019 Feb; 19(1):22. PubMed ID: 30819131 [TBL] [Abstract][Full Text] [Related]
12. Integrated diagnostics: a conceptual framework with examples. Madabhushi A; Doyle S; Lee G; Basavanhally A; Monaco J; Masters S; Tomaszewski J; Feldman M Clin Chem Lab Med; 2010 Jul; 48(7):989-98. PubMed ID: 20491597 [TBL] [Abstract][Full Text] [Related]
13. Spectral embedding based probabilistic boosting tree (ScEPTre): classifying high dimensional heterogeneous biomedical data. Tiwari P; Rosen M; Reed G; Kurhanewicz J; Madabhushi A Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):844-51. PubMed ID: 20426190 [TBL] [Abstract][Full Text] [Related]
14. Learning Flexible Graph-Based Semi-Supervised Embedding. Dornaika F; El Traboulsi Y IEEE Trans Cybern; 2016 Jan; 46(1):206-18. PubMed ID: 25730836 [TBL] [Abstract][Full Text] [Related]
15. Supervised multi-view canonical correlation analysis (sMVCCA): integrating histologic and proteomic features for predicting recurrent prostate cancer. Lee G; Singanamalli A; Wang H; Feldman MD; Master SR; Shih NN; Spangler E; Rebbeck T; Tomaszewski JE; Madabhushi A IEEE Trans Med Imaging; 2015 Jan; 34(1):284-97. PubMed ID: 25203987 [TBL] [Abstract][Full Text] [Related]
16. A graph-based lesion characterization and deep embedding approach for improved computer-aided diagnosis of nonmass breast MRI lesions. Gallego-Ortiz C; Martel AL Med Image Anal; 2019 Jan; 51():116-124. PubMed ID: 30412826 [TBL] [Abstract][Full Text] [Related]
17. Discriminative graph embedding for label propagation. Nguyen CH; Mamitsuka H IEEE Trans Neural Netw; 2011 Sep; 22(9):1395-405. PubMed ID: 21788187 [TBL] [Abstract][Full Text] [Related]
18. Content-independent embedding scheme for multi-modal medical image watermarking. Nyeem H; Boles W; Boyd C Biomed Eng Online; 2015 Feb; 14():7. PubMed ID: 25649491 [TBL] [Abstract][Full Text] [Related]
19. Learning Multi-Modal Nonlinear Embeddings: Performance Bounds and an Algorithm. Kaya S; Vural E IEEE Trans Image Process; 2021; 30():4384-4394. PubMed ID: 33848248 [TBL] [Abstract][Full Text] [Related]
20. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]