These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25705855)

  • 1. Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles.
    Civardi C; Schwarze FW; Wick P
    Environ Pollut; 2015 May; 200():126-32. PubMed ID: 25705855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta.
    Civardi C; Schubert M; Fey A; Wick P; Schwarze FW
    PLoS One; 2015; 10(11):e0142578. PubMed ID: 26554706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolerance to wood preservatives by copper-tolerant wood-rot fungi native to south-central Chile.
    Guillén Y; Navias D; Machuca A
    Biodegradation; 2009 Feb; 20(1):135-42. PubMed ID: 18654748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated control of wood destroying basidiomycetes combining Cu-based wood preservatives and Trichoderma spp.
    Ribera J; Fink S; Bas MD; Schwarze FW
    PLoS One; 2017; 12(4):e0174335. PubMed ID: 28379978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper in Wood Preservatives Delayed Wood Decomposition and Shifted Soil Fungal but Not Bacterial Community Composition.
    Lasota S; Stephan I; Horn MA; Otto W; Noll M
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30530712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative human health risk assessment along the lifecycle of nano-scale copper-based wood preservatives.
    Hristozov D; Pizzol L; Basei G; Zabeo A; Mackevica A; Hansen SF; Gosens I; Cassee FR; de Jong W; Koivisto AJ; Neubauer N; Sanchez Jimenez A; Semenzin E; Subramanian V; Fransman W; Jensen KA; Wohlleben W; Stone V; Marcomini A
    Nanotoxicology; 2018 Sep; 12(7):747-765. PubMed ID: 29893192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species.
    Civardi C; Van den Bulcke J; Schubert M; Michel E; Butron MI; Boone MN; Dierick M; Van Acker J; Wick P; Schwarze FW
    PLoS One; 2016; 11(9):e0163124. PubMed ID: 27649315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal efficacy of environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara, copper, or boron salts.
    Kim HY; Jeong HS; Min BC; Ahn SH; Oh SC; Yoon YH; Choi IG; Yang I
    Environ Toxicol Chem; 2011 Jun; 30(6):1297-305. PubMed ID: 21381086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating dermal transfer of copper particles from the surfaces of pressure-treated lumber and implications for exposure.
    Platten WE; Sylvest N; Warren C; Arambewela M; Harmon S; Bradham K; Rogers K; Thomas T; Luxton TP
    Sci Total Environ; 2016 Apr; 548-549():441-449. PubMed ID: 26826852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion.
    Civardi C; Schlagenhauf L; Kaiser JP; Hirsch C; Mucchino C; Wichser A; Wick P; Schwarze FW
    J Nanobiotechnology; 2016 Nov; 14(1):77. PubMed ID: 27894312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing the structural and chemical properties of copper-based nanoparticles released from copper treated wood.
    Wang C; Qi C
    RSC Adv; 2022 Apr; 12(18):11391-11401. PubMed ID: 35425055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformations of Nanoenabled Copper Formulations Govern Release, Antifungal Effectiveness, and Sustainability throughout the Wood Protection Lifecycle.
    Pantano D; Neubauer N; Navratilova J; Scifo L; Civardi C; Stone V; von der Kammer F; Müller P; Sobrido MS; Angeletti B; Rose J; Wohlleben W
    Environ Sci Technol; 2018 Feb; 52(3):1128-1138. PubMed ID: 29373787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part I: Relative importance of water and sediment as exposure routes.
    Ramskov T; Thit A; Croteau MN; Selck H
    Aquat Toxicol; 2015 Jul; 164():81-91. PubMed ID: 25935103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical chemical properties and cell toxicity of sanding copper-treated lumber.
    Sisler JD; Qi C; McKinney W; Shaffer J; Andrew M; Lee T; Thomas T; Castranova V; Mercer RR; Qian Y
    J Occup Environ Hyg; 2018 Apr; 15(4):311-321. PubMed ID: 29300681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of colloid-size copper-based pesticides and wood-preservatives against microbial activities of Gram-positive Bacillus species using five-day biochemical oxygen demand test.
    Tegenaw A; Sorial GA; Sahle-Demessie E
    J Environ Sci (China); 2021 Jul; 105():71-80. PubMed ID: 34130841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara, copper and/or boron salts.
    Ahn SH; Oh SC; Choi IG; Han GS; Jeong HS; Kim KW; Yoon YH; Yang I
    J Hazard Mater; 2010 Jun; 178(1-3):604-11. PubMed ID: 20153107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of corn steep liquor and glucose on colonization of control and CCB (Cu/Cr/B)-treated wood by brown rot fungi.
    Humar M; Amartey SA; Pohleven F
    Waste Manag; 2006; 26(5):459-65. PubMed ID: 15923114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focused Microbiome Shifts in Reconstructed Wetlands Correlated with Elevated Copper Concentrations Originating from Micronized Copper Azole-Treated Wood.
    Reichman JR; Johnson MG; Rygiewicz PT; Smith BM; Bollman MA; Storm MJ; King GA; Andersen CP
    Environ Toxicol Chem; 2021 Dec; 40(12):3351-3368. PubMed ID: 34551151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sublethal effects of copper sulphate compared to copper nanoparticles in rainbow trout (Oncorhynchus mykiss) at low pH: physiology and metal accumulation.
    Al-Bairuty GA; Boyle D; Henry TB; Handy RD
    Aquat Toxicol; 2016 May; 174():188-98. PubMed ID: 26966873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens.
    Shi J; Peng C; Yang Y; Yang J; Zhang H; Yuan X; Chen Y; Hu T
    Nanotoxicology; 2014 Mar; 8(2):179-88. PubMed ID: 23311584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.