These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 25705874)

  • 1. Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination.
    Bacallao K; Monje PV
    PLoS One; 2015; 10(2):e0116948. PubMed ID: 25705874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opposing roles of PKA and EPAC in the cAMP-dependent regulation of schwann cell proliferation and differentiation [corrected].
    Bacallao K; Monje PV
    PLoS One; 2013; 8(12):e82354. PubMed ID: 24349260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium Reversibly Inhibits Schwann Cell Proliferation and Differentiation Without Inducing Myelin Loss.
    PiƱero G; Berg R; Andersen ND; Setton-Avruj P; Monje PV
    Mol Neurobiol; 2017 Dec; 54(10):8287-8307. PubMed ID: 27917448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axon contact-driven Schwann cell dedifferentiation.
    Soto J; Monje PV
    Glia; 2017 Jun; 65(6):864-882. PubMed ID: 28233923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of axon-related Schwann cells in vitro: II. Control of myelin formation by basal lamina.
    Eldridge CF; Bunge MB; Bunge RP
    J Neurosci; 1989 Feb; 9(2):625-38. PubMed ID: 2918381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. COUP-TFII plays a role in cAMP-induced Schwann cell differentiation and in vitro myelination by up-regulating Krox20.
    Han SH; Kim YH; Park SJ; Cho JG; Shin YK; Hong YB; Yun J; Han JY; Park HT; Park JI
    J Neurochem; 2023 Jun; 165(5):660-681. PubMed ID: 36648143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic and Functional Characteristics of Human Schwann Cells as Revealed by Cell-Based Assays and RNA-SEQ.
    Monje PV; Sant D; Wang G
    Mol Neurobiol; 2018 Aug; 55(8):6637-6660. PubMed ID: 29327207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitogen-activated protein kinase p38 regulates Krox-20 to direct Schwann cell differentiation and peripheral myelination.
    Hossain S; de la Cruz-Morcillo MA; Sanchez-Prieto R; Almazan G
    Glia; 2012 Jul; 60(7):1130-44. PubMed ID: 22511272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MLCK regulates Schwann cell cytoskeletal organization, differentiation and myelination.
    Leitman EM; Tewari A; Horn M; Urbanski M; Damanakis E; Einheber S; Salzer JL; de Lanerolle P; Melendez-Vasquez CV
    J Cell Sci; 2011 Nov; 124(Pt 22):3784-96. PubMed ID: 22100921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse schwann cells need both NRG1 and cyclic AMP to myelinate.
    Arthur-Farraj P; Wanek K; Hantke J; Davis CM; Jayakar A; Parkinson DB; Mirsky R; Jessen KR
    Glia; 2011 May; 59(5):720-33. PubMed ID: 21322058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the protein zero myelin gene in axon-related Schwann cells is linked to basal lamina formation.
    Fernandez-Valle C; Fregien N; Wood PM; Bunge MB
    Development; 1993 Nov; 119(3):867-80. PubMed ID: 7514526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable Differentiation and Dedifferentiation Assays Using Neuron-Free Schwann Cell Cultures.
    Monje PV
    Methods Mol Biol; 2018; 1739():213-232. PubMed ID: 29546710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysophosphatidic acid (LPA) and its receptor, LPA1 , influence embryonic schwann cell migration, myelination, and cell-to-axon segregation.
    Anliker B; Choi JW; Lin ME; Gardell SE; Rivera RR; Kennedy G; Chun J
    Glia; 2013 Dec; 61(12):2009-22. PubMed ID: 24115248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rac1 controls Schwann cell myelination through cAMP and NF2/merlin.
    Guo L; Moon C; Niehaus K; Zheng Y; Ratner N
    J Neurosci; 2012 Nov; 32(48):17251-61. PubMed ID: 23197717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition.
    Morgan L; Jessen KR; Mirsky R
    J Cell Biol; 1991 Feb; 112(3):457-67. PubMed ID: 1704008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-antagonistic relationship between mitogenic factors and cAMP in adult Schwann cell re-differentiation.
    Monje PV; Rendon S; Athauda G; Bates M; Wood PM; Bunge MB
    Glia; 2009 Jul; 57(9):947-61. PubMed ID: 19053056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the myelin gene periaxin provides evidence for Krox-20-independent myelin-related signalling in Schwann cells.
    Parkinson DB; Dickinson S; Bhaskaran A; Kinsella MT; Brophy PJ; Sherman DL; Sharghi-Namini S; Duran Alonso MB; Mirsky R; Jessen KR
    Mol Cell Neurosci; 2003 May; 23(1):13-27. PubMed ID: 12799134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of Schwann cell myelination in vitro by antibody to the L1 adhesion molecule.
    Wood PM; Schachner M; Bunge RP
    J Neurosci; 1990 Nov; 10(11):3635-45. PubMed ID: 2230951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcineurin-nuclear factor of activated T cells regulation of Krox-20 expression in Schwann cells requires elevation of intracellular cyclic AMP.
    Kipanyula MJ; Woodhoo A; Rahman M; Payne D; Jessen KR; Mirsky R
    J Neurosci Res; 2013 Jan; 91(1):105-15. PubMed ID: 23073893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells.
    Iwase T; Jung CG; Bae H; Zhang M; Soliven B
    J Neurochem; 2005 Sep; 94(6):1488-99. PubMed ID: 16086701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.