These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 25705918)

  • 1. Photofunctional surfaces for quantitative fluorescence microscopy: monitoring the effects of photogenerated reactive oxygen species at single cell level with spatiotemporal resolution.
    Stegemann L; Schuermann KC; Strassert CA; Grecco HE
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5944-9. PubMed ID: 25705918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporally Resolved Tracking of Bacterial Responses to ROS-Mediated Damage at the Single-Cell Level with Quantitative Functional Microscopy.
    Barroso Á; Grüner M; Forbes T; Denz C; Strassert CA
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15046-57. PubMed ID: 27227509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo imaging of nitric oxide and reactive oxygen species using laser scanning confocal microscopy.
    Xie YJ; Shen WB
    Methods Mol Biol; 2012; 913():191-200. PubMed ID: 22895760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodynamic inactivation of viruses using upconversion nanoparticles.
    Lim ME; Lee YL; Zhang Y; Chu JJ
    Biomaterials; 2012 Feb; 33(6):1912-20. PubMed ID: 22153019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface modification of the TiO2 nanoparticle surface enables fluorescence monitoring of aggregation and enhanced photoreactivity.
    Kamps K; Leek R; Luebke L; Price R; Nelson M; Simonet S; Eggert DJ; Ateşin TA; Brown EM
    Integr Biol (Camb); 2013 Jan; 5(1):133-43. PubMed ID: 22968372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined atomic force microscopy and fluorescence microscopy.
    Kellermayer MS
    Methods Mol Biol; 2011; 736():439-56. PubMed ID: 21660743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of combined scanning electrochemical and fluorescence microscopy for detection of reactive oxygen species in prostate cancer cells.
    Salamifar SE; Lai RY
    Anal Chem; 2013 Oct; 85(20):9417-21. PubMed ID: 24044675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon fluorescence imaging and bimodal phototherapy of epidermal cancer cells with biocompatible self-assembled polymer nanoparticles.
    Kandoth N; Kirejev V; Monti S; Gref R; Ericson MB; Sortino S
    Biomacromolecules; 2014 May; 15(5):1768-76. PubMed ID: 24673610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical detection of singlet oxygen from single cells.
    Snyder JW; Skovsen E; Lambert JD; Poulsen L; Ogilby PR
    Phys Chem Chem Phys; 2006 Oct; 8(37):4280-93. PubMed ID: 16986070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging live-cell dynamics and structure at the single-molecule level.
    Liu Z; Lavis LD; Betzig E
    Mol Cell; 2015 May; 58(4):644-59. PubMed ID: 26000849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dye surface coating enables visible light activation of TiO2 nanoparticles leading to degradation of neighboring biological structures.
    Blatnik J; Luebke L; Simonet S; Nelson M; Price R; Leek R; Zeng L; Wu A; Brown E
    Microsc Microanal; 2012 Feb; 18(1):134-42. PubMed ID: 22214568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc sulfide nanoparticles selectively induce cytotoxic and genotoxic effects on leukemic cells: involvement of reactive oxygen species and tumor necrosis factor alpha.
    Dash SK; Ghosh T; Roy S; Chattopadhyay S; Das D
    J Appl Toxicol; 2014 Nov; 34(11):1130-44. PubMed ID: 24477783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total internal reflection fluorescence (TIRF) microscopy for real-time imaging of nanoparticle-cell plasma membrane interaction.
    Parhamifar L; Moghimi SM
    Methods Mol Biol; 2012; 906():473-82. PubMed ID: 22791457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of sequential staining for detection of heterogeneous intracellular response of individual Jurkat cells to lysophosphatidylcholine.
    Afrimzon E; Zurgil N; Shafran Y; Leibovich P; Sobolev M; Guejes L; Deutsch M
    J Immunol Methods; 2013 Jan; 387(1-2):96-106. PubMed ID: 23063692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells.
    Tang W; Yuan Y; Liu C; Wu Y; Lu X; Qian J
    Nanomedicine (Lond); 2014 Mar; 9(3):397-412. PubMed ID: 23614636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy.
    Dixit R; Cyr R
    Plant J; 2003 Oct; 36(2):280-90. PubMed ID: 14535891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy.
    Pasparakis G
    Small; 2013 Dec; 9(24):4130-4. PubMed ID: 23813944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal characterization of phagocytic NADPH oxidase and oxidative destruction of intraphagosomal organisms in vivo using autofluorescence imaging and Raman microspectroscopy.
    Chang WT; Yang YC; Lu HH; Li IL; Liau I
    J Am Chem Soc; 2010 Feb; 132(6):1744-5. PubMed ID: 20102188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles.
    Li Y; Zhang W; Niu J; Chen Y
    ACS Nano; 2012 Jun; 6(6):5164-73. PubMed ID: 22587225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx.
    Löschberger A; Niehörster T; Sauer M
    Biotechnol J; 2014 May; 9(5):693-7. PubMed ID: 24639408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.