These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25705975)

  • 1. Monitoring reactive microencapsulation dynamics using microfluidics.
    Polenz I; Brosseau Q; Baret JC
    Soft Matter; 2015 Apr; 11(15):2916-23. PubMed ID: 25705975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyurea microcapsules in microfluidics: surfactant control of soft membranes.
    Polenz I; Weitz DA; Baret JC
    Langmuir; 2015 Jan; 31(3):1127-34. PubMed ID: 25531127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches.
    Daradmare S; Lee CS
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112795. PubMed ID: 36049253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Fabrication of Structure-Controlled Chitosan Microcapsules via Interfacial Cross-Linking of Droplet Templates.
    Mu XT; Li Y; Ju XJ; Yang XL; Xie R; Wang W; Liu Z; Chu LY
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57514-57525. PubMed ID: 33301686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Fabrication and Thermal Properties of Microencapsulated N-Hexadecane with a Hybrid Polymer Shell for Thermal Energy Storage.
    Yang L; Dai L; Ye L; Yang R; Lu Y
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial/free radical polymerization microencapsulation: kinetics of particle formation.
    Mahabadi HK; Ng TH; Tan HS
    J Microencapsul; 1996; 13(5):559-73. PubMed ID: 8864993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lego-Inspired Glass Capillary Microfluidic Device: A Technique for Bespoke Microencapsulation of Phase Change Materials.
    Parvate S; Vladisavljević GT; Leister N; Spyrou A; Bolognesi G; Baiocco D; Zhang Z; Chattopadhyay S
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17195-17210. PubMed ID: 36961881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple One-Step and Rapid Patterning of PDMS Microfluidic Device Wettability for PDMS Shell Production.
    Feng C; Takahashi K; Zhu J
    Front Bioeng Biotechnol; 2022; 10():891213. PubMed ID: 35519623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-Channel Responsive Surface Wettability for Reversible and Multiform Emulsion Droplet Preparation and Applications.
    Li L; Yan Z; Jin M; You X; Xie S; Liu Z; van den Berg A; Eijkel JCT; Shui L
    ACS Appl Mater Interfaces; 2019 May; 11(18):16934-16943. PubMed ID: 30983312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of biosurfactant adsorption to oil/water interfaces from millisecond scale tensiometry measurements.
    Kong L; Saar KL; Jacquat R; Hong L; Levin A; Gang H; Ye R; Mu B; Knowles TPJ
    Interface Focus; 2017 Dec; 7(6):20170013. PubMed ID: 29147556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave, photo- and thermally responsive PNIPAm-gold nanoparticle microgels.
    Budhlall BM; Marquez M; Velev OD
    Langmuir; 2008 Oct; 24(20):11959-66. PubMed ID: 18817426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Robust Oil-in-Oil Emulsion for the Nonaqueous Encapsulation of Hydrophilic Payloads.
    Lu X; Katz JS; Schmitt AK; Moore JS
    J Am Chem Soc; 2018 Mar; 140(10):3619-3625. PubMed ID: 29457726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the morphology of polyurea microcapsules using microfluidics.
    Polenz I; Datta SS; Weitz DA
    Langmuir; 2014 Nov; 30(44):13405-10. PubMed ID: 25320872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Poly(ethylene glycol)@Polyurea Microcapsules Using Oil/Oil Emulsions and Their Application as Microreactors.
    Zarour A; Omar S; Abu-Reziq R
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of soft microcapsules containing multiple core materials with interfacial dehydration reaction using the (W/O)/W emulsion.
    Taguchi Y; Suzuki T; Saito N; Yokoyama H; Tanaka M
    J Microencapsul; 2017 Dec; 34(8):744-753. PubMed ID: 29119840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimisation of bacterial release from a stable microfluidic-generated water-in-oil-in-water emulsion.
    Mohd Isa NS; El Kadri H; Vigolo D; Gkatzionis K
    RSC Adv; 2021 Feb; 11(13):7738-7749. PubMed ID: 35423274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous dispersions of silica shell/water-core microcapsules.
    O'Sullivan M; Vincent B
    J Colloid Interface Sci; 2010 Mar; 343(1):31-5. PubMed ID: 19963222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Ultra-Thin-Shell Microcapsules Using Osmolarity-Controlled Swelling Method.
    Guo J; Hou L; Hou J; Yu J; Hu Q
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32340189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monodisperse Alginate Microcapsules with Spatially Confined Bioactive Molecules via Microfluid-Generated W/W/O Emulsions.
    Sun H; Zheng H; Tang Q; Dong Y; Qu F; Wang Y; Yang G; Meng T
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37313-37321. PubMed ID: 31517474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.