BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25706146)

  • 1. Air-adapted Methanosarcina acetivorans shows high methane production and develops resistance against oxygen stress.
    Jasso-Chávez R; Santiago-Martínez MG; Lira-Silva E; Pineda E; Zepeda-Rodríguez A; Belmont-Díaz J; Encalada R; Saavedra E; Moreno-Sánchez R
    PLoS One; 2015; 10(2):e0117331. PubMed ID: 25706146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cd2+ resistance mechanisms in Methanosarcina acetivorans involve the increase in the coenzyme M content and induction of biofilm synthesis.
    Lira-Silva E; Santiago-Martínez MG; García-Contreras R; Zepeda-Rodríguez A; Marín-Hernández A; Moreno-Sánchez R; Jasso-Chávez R
    Environ Microbiol Rep; 2013 Dec; 5(6):799-808. PubMed ID: 24249288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea.
    Duszenko N; Buan NR
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate oxidation is linked to energy conservation and to oxygen detoxification via a putative terminal cytochrome oxidase in Methanosarcina acetivorans.
    Feregrino-Mondragón RD; Santiago-Martínez MG; Silva-Flores M; Encalada R; Reyes-Prieto A; Rodríguez-Zavala JS; Peña-Ocaña BA; Moreno-Sánchez R; Saavedra E; Jasso-Chávez R
    Arch Biochem Biophys; 2023 Jul; 743():109667. PubMed ID: 37327962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans.
    Li Q; Li L; Rejtar T; Lessner DJ; Karger BL; Ferry JG
    J Bacteriol; 2006 Jan; 188(2):702-10. PubMed ID: 16385060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of a bacterial catalase in a strictly anaerobic methanogen significantly increases tolerance to hydrogen peroxide but not oxygen.
    Jennings ME; Schaff CW; Horne AJ; Lessner FH; Lessner DJ
    Microbiology (Reading); 2014 Feb; 160(Pt 2):270-278. PubMed ID: 24222618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A.
    Rohlin L; Gunsalus RP
    BMC Microbiol; 2010 Feb; 10():62. PubMed ID: 20178638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pNEB193-derived suicide plasmids for gene deletion and protein expression in the methane-producing archaeon, Methanosarcina acetivorans.
    Shea MT; Walter ME; Duszenko N; Ducluzeau AL; Aldridge J; King SK; Buan NR
    Plasmid; 2016; 84-85():27-35. PubMed ID: 26876941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production.
    Catlett JL; Ortiz AM; Buan NR
    Appl Environ Microbiol; 2015 Oct; 81(19):6528-37. PubMed ID: 26162885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Archaea-specific
    Gupta D; Shalvarjian KE; Nayak DD
    Elife; 2022 Apr; 11():. PubMed ID: 35380107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane.
    McAnulty MJ; Poosarla VG; Li J; Soo VW; Zhu F; Wood TK
    Biotechnol Bioeng; 2017 Apr; 114(4):852-861. PubMed ID: 27800599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of methanogenesis by cadmium in the marine archaeon Methanosarcina acetivorans.
    Lira-Silva E; Santiago-Martínez MG; Hernández-Juárez V; García-Contreras R; Moreno-Sánchez R; Jasso-Chávez R
    PLoS One; 2012; 7(11):e48779. PubMed ID: 23152802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration.
    Yan Z; Joshi P; Gorski CA; Ferry JG
    Nat Commun; 2018 Apr; 9(1):1642. PubMed ID: 29691409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex.
    Schlegel K; Welte C; Deppenmeier U; Müller V
    FEBS J; 2012 Dec; 279(24):4444-52. PubMed ID: 23066798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics.
    Lessner DJ; Li L; Li Q; Rejtar T; Andreev VP; Reichlen M; Hill K; Moran JJ; Karger BL; Ferry JG
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17921-6. PubMed ID: 17101988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina acetivorans C2A.
    Benedict MN; Gonnerman MC; Metcalf WW; Price ND
    J Bacteriol; 2012 Feb; 194(4):855-65. PubMed ID: 22139506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Methanosarcina acetivorans thioredoxin system activates DNA binding of the redox-sensitive transcriptional regulator MsvR.
    Sheehan R; McCarver AC; Isom CE; Karr EA; Lessner DJ
    J Ind Microbiol Biotechnol; 2015 Jun; 42(6):965-9. PubMed ID: 25791378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deconstructing
    Schöne C; Poehlein A; Jehmlich N; Adlung N; Daniel R; von Bergen M; Scheller S; Rother M
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34992140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol.
    Li L; Li Q; Rohlin L; Kim U; Salmon K; Rejtar T; Gunsalus RP; Karger BL; Ferry JG
    J Proteome Res; 2007 Feb; 6(2):759-71. PubMed ID: 17269732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methanogenesis in marine sediments.
    Ferry JG; Lessner DJ
    Ann N Y Acad Sci; 2008 Mar; 1125():147-57. PubMed ID: 18378593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.