These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 25706195)

  • 1. Colloidally stable and surfactant-free protein-coated gold nanorods in biological media.
    Tebbe M; Kuttner C; Männel M; Fery A; Chanana M
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5984-91. PubMed ID: 25706195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid stabilized gold nanorods: towards improved colloidal stability and biocompatibility.
    Santhosh PB; Thomas N; Sudhakar S; Chadha A; Mani E
    Phys Chem Chem Phys; 2017 Jul; 19(28):18494-18504. PubMed ID: 28682382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation.
    Alkilany AM; Nagaria PK; Wyatt MD; Murphy CJ
    Langmuir; 2010 Jun; 26(12):9328-33. PubMed ID: 20356032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and plasmonic response of self-assembled layers of colloidal gold nanorods and branched gold nanoparticles.
    Schulz KM; Abb S; Fernandes R; Abb M; Kanaras AG; Muskens OL
    Langmuir; 2012 Jun; 28(24):8874-80. PubMed ID: 22401603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High colloidal stability of gold nanorods coated with a peptide-ethylene glycol: Analysis by cyanide-mediated etching and nanoparticle tracking analysis.
    Free P; Conger G; Siji W; Zhang JB; Fernig DG
    Colloids Surf B Biointerfaces; 2016 Oct; 146():871-8. PubMed ID: 27455407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of less toxic gold nanorods by using dodecylethyldimethylammonium bromide as an alternative growth-directing surfactant.
    Allen JM; Xu J; Blahove M; Canonico-May SA; Santaloci TJ; Braselton ME; Stone JW
    J Colloid Interface Sci; 2017 Nov; 505():1172-1176. PubMed ID: 28715861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods.
    Smith DK; Korgel BA
    Langmuir; 2008 Feb; 24(3):644-9. PubMed ID: 18184021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Equilibrium in the Cetyltrimethylammonium Bromide-Au Nanoparticle Bilayer, and the Consequent Impact on the Formation of the Nanoparticle Protein Corona.
    Barbero F; Moriones OH; Bastús NG; Puntes V
    Bioconjug Chem; 2019 Nov; 30(11):2917-2930. PubMed ID: 31621309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer.
    Alkilany AM; Frey RL; Ferry JL; Murphy CJ
    Langmuir; 2008 Sep; 24(18):10235-9. PubMed ID: 18700748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry.
    Lien CH; Kuo WS; Cho KC; Lin CY; Su YD; Huang LL; Campagnola PJ; Dong CY; Chen SJ
    Opt Express; 2011 Mar; 19(7):6260-8. PubMed ID: 21451651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overgrowth of gold nanorods by using a binary surfactant mixture.
    Khlebtsov BN; Khanadeev VA; Ye J; Sukhorukov GB; Khlebtsov NG
    Langmuir; 2014 Feb; 30(6):1696-703. PubMed ID: 24460392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanometric resolution in the hydrodynamic size analysis of ligand-stabilized gold nanorods.
    Mehtala JG; Wei A
    Langmuir; 2014 Nov; 30(46):13737-43. PubMed ID: 25349895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide-promoted reshaping and coarsening of gold nanorods and nanoparticles.
    Pan H; Low S; Weerasuriya N; Shon YS
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3406-13. PubMed ID: 25611371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and equilibrium effects of the surface passivant on the stability of Au nanorods.
    Merrill NA; Sethi M; Knecht MR
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7906-14. PubMed ID: 23919564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of Proteins Using an Array of Surfactant-Stabilized Gold Nanoparticles.
    Rogowski JL; Verma MS; Gu FX
    Langmuir; 2016 Aug; 32(30):7621-9. PubMed ID: 27399345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological effect of gold nanoparticles on the adsorption of bovine serum albumin.
    Chaudhary A; Gupta A; Khan S; Nandi CK
    Phys Chem Chem Phys; 2014 Oct; 16(38):20471-82. PubMed ID: 25140357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ organization of gold nanorods on mixed self-assembled-monolayer substrates.
    Zareie MH; Xu X; Cortie MB
    Small; 2007 Jan; 3(1):139-45. PubMed ID: 17294485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The facile removal of CTAB from the surface of gold nanorods.
    He J; Unser S; Bruzas I; Cary R; Shi Z; Mehra R; Aron K; Sagle L
    Colloids Surf B Biointerfaces; 2018 Mar; 163():140-145. PubMed ID: 29291499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast thermal analysis of surface functionalized gold nanorods in aqueous solution.
    Huang J; Park J; Wang W; Murphy CJ; Cahill DG
    ACS Nano; 2013 Jan; 7(1):589-97. PubMed ID: 23230822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced stability of gold colloids produced by femtosecond laser synthesis in aqueous solution of CTAB.
    Sobhan MA; Withford MJ; Goldys EM
    Langmuir; 2010 Mar; 26(5):3156-9. PubMed ID: 19916535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.