BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25706353)

  • 1. Inclusion Complexes Between Polytetrahydrofuran-b-Amylose Block Copolymers and Polytetrahydrofuran Chains.
    Rachmawati R; Woortman AJ; Kumar K; Loos K
    Macromol Biosci; 2015 Jun; 15(6):812-28. PubMed ID: 25706353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable properties of inclusion complexes between amylose and polytetrahydrofuran.
    Rachmawati R; Woortman AJ; Loos K
    Macromol Biosci; 2013 Jun; 13(6):767-76. PubMed ID: 23610062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile preparation method for inclusion complexes between amylose and polytetrahydrofurans.
    Rachmawati R; Woortman AJ; Loos K
    Biomacromolecules; 2013 Feb; 14(2):575-83. PubMed ID: 23317375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-responsive behavior of inclusion complexes between amylose and polytetrahydrofuran.
    Rachmawati R; Woortman AJ; Loos K
    Macromol Biosci; 2014 Jan; 14(1):56-68. PubMed ID: 23996920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of novel multilayered thin films based on inclusion complex formation between amylose derivatives and guest polymers.
    Kida T; Minabe T; Nakano S; Akashi M
    Langmuir; 2008 Sep; 24(17):9227-9. PubMed ID: 18686984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amylose selectively includes one from a mixture of two resemblant polyethers in vine-twining polymerization.
    Kaneko Y; Beppu K; Kadokawa J
    Biomacromolecules; 2007 Oct; 8(10):2983-5. PubMed ID: 17880135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Stability of Amylose Inclusion Complexes Depending on Guest Polymers and Their Application to Supramolecular Polymeric Materials.
    Tanaka T; Tsutsui A; Tanaka K; Yamamoto K; Kadokawa JI
    Biomolecules; 2017 Mar; 7(1):. PubMed ID: 28294979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vine-twining polymerization: a new preparation method for well-defined supramolecules composed of amylose and synthetic polymers.
    Kaneko Y; Kadokawa J
    Chem Rec; 2005; 5(1):36-46. PubMed ID: 15806555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization, and comparative analysis of amylose-guest complexes prepared by microwave irradiation.
    Ryno LM; Levine Y; Iovine PM
    Carbohydr Res; 2014 Jan; 383():82-8. PubMed ID: 24333898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis and structural characterization of amylose-Fatty Acid inclusion complexes.
    Cao Z; Woortman AJ; Rudolf P; Loos K
    Macromol Biosci; 2015 May; 15(5):691-7. PubMed ID: 25641740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Amylose-b-P2 VP Block Copolymers.
    Kumar K; Woortman AJ; Loos K
    Macromol Rapid Commun; 2015 Dec; 36(23):2097-101. PubMed ID: 26437256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host-guest molecular interactions in vanillin/amylose inclusion complexes.
    Rodríguez SD; Bernik DL
    Appl Spectrosc; 2013 Aug; 67(8):884-91. PubMed ID: 23876727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vine-twining polymerization: amylose twines around polyethers to form amylose-polyether inclusion complexes.
    Kadokawa J; Kaneko Y; Nagase S; Takahashi T; Tagaya H
    Chemistry; 2002 Aug; 8(15):3321-6. PubMed ID: 12203312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of Supramolecular Soft Materials from Amylosic Inclusion Complexes with Designed Guest Polymers Obtained by Vine-Twining Polymerization.
    Kadokawa JI; Yano K; Orio S; Yamamoto K
    ACS Omega; 2019 Apr; 4(4):6331-6338. PubMed ID: 31459773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemocompatible, biocompatible and antifouling Acylated dextran-g-polytetrahydrofuran graft copolymer with silver nanoparticles: Synthesis, characterization and properties.
    Zhao CL; Deng JR; Gao YZ; Wu YX
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111998. PubMed ID: 33812618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single crystals of V-amylose complexed with alpha-naphthol.
    Cardoso MB; Putaux JL; Nishiyama Y; Helbert W; Hÿtch M; Silveira NP; Chanzy H
    Biomacromolecules; 2007 Apr; 8(4):1319-26. PubMed ID: 17348704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between amylose and beta-cyclodextrin investigated by complexing with conjugated linoleic acid.
    Yang Y; Gu Z; Xu H; Li F; Zhang G
    J Agric Food Chem; 2010 May; 58(9):5620-4. PubMed ID: 20377176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of spring dextrin impact on amylose retrogradation.
    Xu J; Zhao W; Ning Y; Jin Z; Xu B; Xu X
    J Agric Food Chem; 2012 May; 60(19):4970-6. PubMed ID: 22536814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural investigation of amylose complexes with small ligands: helical conformation, crystalline structure and thermostability.
    Le Bail P; Rondeau C; Buléon A
    Int J Biol Macromol; 2005 Mar; 35(1-2):1-7. PubMed ID: 15769508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of complexation between amylose and a flavored model sponge cake on the degree of aroma compound release.
    Pozo-Bayon MA; Biais B; Rampon V; Cayot N; Le Bail P
    J Agric Food Chem; 2008 Aug; 56(15):6640-7. PubMed ID: 18620405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.