These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25706440)

  • 1. Deciphering and prediction of plant dynamics under field conditions.
    Izawa T
    Curr Opin Plant Biol; 2015 Apr; 24():87-92. PubMed ID: 25706440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering and prediction of transcriptome dynamics under fluctuating field conditions.
    Nagano AJ; Sato Y; Mihara M; Antonio BA; Motoyama R; Itoh H; Nagamura Y; Izawa T
    Cell; 2012 Dec; 151(6):1358-69. PubMed ID: 23217716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological significance of the plant circadian clock in natural field conditions.
    Izawa T
    Plant Cell Environ; 2012 Oct; 35(10):1729-41. PubMed ID: 22681566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Punctual transcriptional regulation by the rice circadian clock under fluctuating field conditions.
    Matsuzaki J; Kawahara Y; Izawa T
    Plant Cell; 2015 Mar; 27(3):633-48. PubMed ID: 25757473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layers of crosstalk between circadian regulation and environmental signalling in plants.
    Paajanen P; Lane de Barros Dantas L; Dodd AN
    Curr Biol; 2021 Apr; 31(8):R399-R413. PubMed ID: 33905701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fillable and unfillable gaps in plant transcriptome under field and controlled environments.
    Hashida Y; Tezuka A; Nomura Y; Kamitani M; Kashima M; Kurita Y; Nagano AJ
    Plant Cell Environ; 2022 Aug; 45(8):2410-2427. PubMed ID: 35610174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putting mechanisms into crop production models.
    Boote KJ; Jones JW; White JW; Asseng S; Lizaso JI
    Plant Cell Environ; 2013 Sep; 36(9):1658-72. PubMed ID: 23600481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley.
    Yin X; Struik PC; van Eeuwijk FA; Stam P; Tang J
    J Exp Bot; 2005 Mar; 56(413):967-76. PubMed ID: 15710636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ambient temperature signalling in plants.
    Wigge PA
    Curr Opin Plant Biol; 2013 Oct; 16(5):661-6. PubMed ID: 24021869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian Regulation of the Plant Transcriptome Under Natural Conditions.
    Panter PE; Muranaka T; Cuitun-Coronado D; Graham CA; Yochikawa A; Kudoh H; Dodd AN
    Front Genet; 2019; 10():1239. PubMed ID: 31850080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FIT: statistical modeling tool for transcriptome dynamics under fluctuating field conditions.
    Iwayama K; Aisaka Y; Kutsuna N; Nagano AJ
    Bioinformatics; 2017 Jun; 33(11):1672-1680. PubMed ID: 28158396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental regulation of flowering.
    Ausín I; Alonso-Blanco C; Martínez-Zapater JM
    Int J Dev Biol; 2005; 49(5-6):689-705. PubMed ID: 16096975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of chromatin dynamics on plant light responses and circadian clock function.
    Barneche F; Malapeira J; Mas P
    J Exp Bot; 2014 Jun; 65(11):2895-913. PubMed ID: 24520020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From plant traits to plant communities: a statistical mechanistic approach to biodiversity.
    Shipley B; Vile D; Garnier E
    Science; 2006 Nov; 314(5800):812-4. PubMed ID: 17023613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interactions between the circadian clock and primary metabolism.
    Farré EM; Weise SE
    Curr Opin Plant Biol; 2012 Jun; 15(3):293-300. PubMed ID: 22305520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant cell responses to cold are all about timing.
    Eriksson ME; Webb AA
    Curr Opin Plant Biol; 2011 Dec; 14(6):731-7. PubMed ID: 21937261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between plant circadian clocks and solute transport.
    Haydon MJ; Bell LJ; Webb AA
    J Exp Bot; 2011 Apr; 62(7):2333-48. PubMed ID: 21378117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What has natural variation taught us about plant development, physiology, and adaptation?
    Alonso-Blanco C; Aarts MG; Bentsink L; Keurentjes JJ; Reymond M; Vreugdenhil D; Koornneef M
    Plant Cell; 2009 Jul; 21(7):1877-96. PubMed ID: 19574434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the influence of genetic and environmental variation on the expression of plant life cycles across landscapes.
    Burghardt LT; Metcalf CJ; Wilczek AM; Schmitt J; Donohue K
    Am Nat; 2015 Feb; 185(2):212-27. PubMed ID: 25616140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.