These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25706711)

  • 1. Reversible modification of structure and properties of cellulose nanofibril-based multilayered thin films induced by postassembly acid treatment.
    Azzam F; Moreau C; Cousin F; Menelle A; Bizot H; Cathala B
    Langmuir; 2015 Mar; 31(9):2800-7. PubMed ID: 25706711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose nanofibril-based multilayered thin films: effect of ionic strength on porosity, swelling, and optical properties.
    Azzam F; Moreau C; Cousin F; Menelle A; Bizot H; Cathala B
    Langmuir; 2014 Jul; 30(27):8091-100. PubMed ID: 24971725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions.
    Ahola S; Salmi J; Johansson LS; Laine J; Osterberg M
    Biomacromolecules; 2008 Apr; 9(4):1273-82. PubMed ID: 18307305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatings.
    Willberg-Keyriläinen P; Vartiainen J; Pelto J; Ropponen J
    Carbohydr Polym; 2017 Aug; 170():160-165. PubMed ID: 28521982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid.
    Valle-Delgado JJ; Johansson LS; Österberg M
    Colloids Surf B Biointerfaces; 2016 Feb; 138():86-93. PubMed ID: 26674836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015; 127():101-9. PubMed ID: 25965462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils.
    Benítez AJ; Torres-Rendon J; Poutanen M; Walther A
    Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils.
    Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S
    Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between Young's Modulus and Film Architecture in Cellulose Nanofibril-Based Multilayered Thin Films.
    Azzam F; Chaunier L; Moreau C; Lourdin D; Bertoncini P; Cathala B
    Langmuir; 2017 May; 33(17):4138-4145. PubMed ID: 28407712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils.
    Qi ZD; Saito T; Fan Y; Isogai A
    Biomacromolecules; 2012 Feb; 13(2):553-8. PubMed ID: 22251371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of TEMPO-oxidized cellulose nanofibril length on film properties.
    Fukuzumi H; Saito T; Isogai A
    Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunosensors for C-Reactive Protein Based on Ultrathin Films of Carboxylated Cellulose Nanofibrils.
    Zhang Y; Rojas OJ
    Biomacromolecules; 2017 Feb; 18(2):526-534. PubMed ID: 28036163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using carboxylated cellulose nanofibers to enhance mechanical and barrier properties of collagen fiber film by electrostatic interaction.
    Wang W; Zhang X; Li C; Du G; Zhang H; Ni Y
    J Sci Food Agric; 2018 Jun; 98(8):3089-3097. PubMed ID: 29210456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly(ethylene glycol).
    Tang H; Butchosa N; Zhou Q
    Adv Mater; 2015 Mar; 27(12):2070-6. PubMed ID: 25665182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the architecture of cellulose nanocrystal-poly(allylamine hydrochloride) multilayered thin films: influence of dipping parameters.
    Moreau C; Beury N; Delorme N; Cathala B
    Langmuir; 2012 Jul; 28(28):10425-36. PubMed ID: 22680784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films.
    Hakalahti M; Salminen A; Seppälä J; Tammelin T; Hänninen T
    Carbohydr Polym; 2015 Aug; 126():78-82. PubMed ID: 25933525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose Nanofibril Film as a Piezoelectric Sensor Material.
    Rajala S; Siponkoski T; Sarlin E; Mettänen M; Vuoriluoto M; Pammo A; Juuti J; Rojas OJ; Franssila S; Tuukkanen S
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15607-14. PubMed ID: 27232271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swelling and Free-Volume Characteristics of TEMPO-Oxidized Cellulose Nanofibril Films.
    Torstensen JØ; Liu M; Jin SA; Deng L; Hawari AI; Syverud K; Spontak RJ; Gregersen ØW
    Biomacromolecules; 2018 Mar; 19(3):1016-1025. PubMed ID: 29420013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials.
    Fujisawa S; Saito T; Kimura S; Iwata T; Isogai A
    Biomacromolecules; 2013 May; 14(5):1541-6. PubMed ID: 23540813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.