These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
29. The influence of residual pectin composition and content on nanocellulose films from ramie fibers: Micro-nano structure and physical properties. Luo L; Yu W; Yi Y; Xing C; Zeng L; Yang Y; Wang H; Tang Z; Tan Z Int J Biol Macromol; 2023 Aug; 247():125812. PubMed ID: 37453632 [TBL] [Abstract][Full Text] [Related]
30. Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces. Shimizu M; Saito T; Fukuzumi H; Isogai A Biomacromolecules; 2014 Nov; 15(11):4320-5. PubMed ID: 25310181 [TBL] [Abstract][Full Text] [Related]
31. Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy. Fukuzumi H; Saito T; Iwamoto S; Kumamoto Y; Ohdaira T; Suzuki R; Isogai A Biomacromolecules; 2011 Nov; 12(11):4057-62. PubMed ID: 21995723 [TBL] [Abstract][Full Text] [Related]
32. Quantifying the interactions between biomimetic biomaterials - collagen I, collagen IV, laminin 521 and cellulose nanofibrils - by colloidal probe microscopy. Nugroho RWN; Harjumäki R; Zhang X; Lou YR; Yliperttula M; Valle-Delgado JJ; Österberg M Colloids Surf B Biointerfaces; 2019 Jan; 173():571-580. PubMed ID: 30347384 [TBL] [Abstract][Full Text] [Related]
33. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Zhou Y; Fu S; Zhang L; Zhan H; Levit MV Carbohydr Polym; 2014 Jan; 101():75-82. PubMed ID: 24299751 [TBL] [Abstract][Full Text] [Related]
34. Bio-based thin films of cellulose nanofibrils and magnetite for potential application in green electronics. Arantes ACC; Silva LE; Wood DF; Almeida CDG; Tonoli GHD; Oliveira JE; Silva JPD; Williams TG; Orts WJ; Bianchi ML Carbohydr Polym; 2019 Mar; 207():100-107. PubMed ID: 30599989 [TBL] [Abstract][Full Text] [Related]
35. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Ahola S; Turon X; Osterberg M; Laine J; Rojas OJ Langmuir; 2008 Oct; 24(20):11592-9. PubMed ID: 18778090 [TBL] [Abstract][Full Text] [Related]
36. The Impact of Surface Charges of Carboxylated Cellulose Nanofibrils on the Water Motions in Hydrated Films. Guccini V; Yu S; Meng Z; Kontturi E; Demmel F; Salazar-Alvarez G Biomacromolecules; 2022 Aug; 23(8):3104-3115. PubMed ID: 35786867 [TBL] [Abstract][Full Text] [Related]
37. Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Liu D; Ma Z; Wang Z; Tian H; Gu M Langmuir; 2014 Aug; 30(31):9544-50. PubMed ID: 25062502 [TBL] [Abstract][Full Text] [Related]
39. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660 [TBL] [Abstract][Full Text] [Related]
40. Recent advancements, trends, fundamental challenges and opportunities in spray deposited cellulose nanofibril films for packaging applications. Nadeem H; Athar M; Dehghani M; Garnier G; Batchelor W Sci Total Environ; 2022 Aug; 836():155654. PubMed ID: 35508247 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]