These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25706711)

  • 21. Hybrid films of chitosan, cellulose nanofibrils and boric acid: Flame retardancy, optical and thermo-mechanical properties.
    Uddin KMA; Ago M; Rojas OJ
    Carbohydr Polym; 2017 Dec; 177():13-21. PubMed ID: 28962751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modification of cellulose nanofibrils with luminescent carbon dots.
    Junka K; Guo J; Filpponen I; Laine J; Rojas OJ
    Biomacromolecules; 2014 Mar; 15(3):876-81. PubMed ID: 24456129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM.
    Jean B; Dubreuil F; Heux L; Cousin F
    Langmuir; 2008 Apr; 24(7):3452-8. PubMed ID: 18324845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties.
    Peng XW; Ren JL; Zhong LX; Sun RC
    Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of cellulose nanofibril bound silver nanoprism for surface enhanced Raman scattering.
    Jiang F; Hsieh YL
    Biomacromolecules; 2014 Oct; 15(10):3608-16. PubMed ID: 25189757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose.
    Cranston ED; Gray DG; Rutland MW
    Langmuir; 2010 Nov; 26(22):17190-7. PubMed ID: 20925376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioactive cellulose nanofibrils for specific human IgG binding.
    Zhang Y; Carbonell RG; Rojas OJ
    Biomacromolecules; 2013 Dec; 14(12):4161-8. PubMed ID: 24131287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silk layering as studied with neutron reflectivity.
    Wallet B; Kharlampieva E; Campbell-Proszowska K; Kozlovskaya V; Malak S; Ankner JF; Kaplan DL; Tsukruk VV
    Langmuir; 2012 Aug; 28(31):11481-9. PubMed ID: 22697306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of residual pectin composition and content on nanocellulose films from ramie fibers: Micro-nano structure and physical properties.
    Luo L; Yu W; Yi Y; Xing C; Zeng L; Yang Y; Wang H; Tang Z; Tan Z
    Int J Biol Macromol; 2023 Aug; 247():125812. PubMed ID: 37453632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces.
    Shimizu M; Saito T; Fukuzumi H; Isogai A
    Biomacromolecules; 2014 Nov; 15(11):4320-5. PubMed ID: 25310181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy.
    Fukuzumi H; Saito T; Iwamoto S; Kumamoto Y; Ohdaira T; Suzuki R; Isogai A
    Biomacromolecules; 2011 Nov; 12(11):4057-62. PubMed ID: 21995723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying the interactions between biomimetic biomaterials - collagen I, collagen IV, laminin 521 and cellulose nanofibrils - by colloidal probe microscopy.
    Nugroho RWN; Harjumäki R; Zhang X; Lou YR; Yliperttula M; Valle-Delgado JJ; Österberg M
    Colloids Surf B Biointerfaces; 2019 Jan; 173():571-580. PubMed ID: 30347384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II).
    Zhou Y; Fu S; Zhang L; Zhan H; Levit MV
    Carbohydr Polym; 2014 Jan; 101():75-82. PubMed ID: 24299751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-based thin films of cellulose nanofibrils and magnetite for potential application in green electronics.
    Arantes ACC; Silva LE; Wood DF; Almeida CDG; Tonoli GHD; Oliveira JE; Silva JPD; Williams TG; Orts WJ; Bianchi ML
    Carbohydr Polym; 2019 Mar; 207():100-107. PubMed ID: 30599989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure.
    Ahola S; Turon X; Osterberg M; Laine J; Rojas OJ
    Langmuir; 2008 Oct; 24(20):11592-9. PubMed ID: 18778090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Impact of Surface Charges of Carboxylated Cellulose Nanofibrils on the Water Motions in Hydrated Films.
    Guccini V; Yu S; Meng Z; Kontturi E; Demmel F; Salazar-Alvarez G
    Biomacromolecules; 2022 Aug; 23(8):3104-3115. PubMed ID: 35786867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties.
    Liu D; Ma Z; Wang Z; Tian H; Gu M
    Langmuir; 2014 Aug; 30(31):9544-50. PubMed ID: 25062502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites.
    Lucenius J; Valle-Delgado JJ; Parikka K; Österberg M
    J Colloid Interface Sci; 2019 Nov; 555():104-114. PubMed ID: 31377636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface.
    Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A
    Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advancements, trends, fundamental challenges and opportunities in spray deposited cellulose nanofibril films for packaging applications.
    Nadeem H; Athar M; Dehghani M; Garnier G; Batchelor W
    Sci Total Environ; 2022 Aug; 836():155654. PubMed ID: 35508247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.