These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 25706711)
41. Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan. Toivonen MS; Kurki-Suonio S; Schacher FH; Hietala S; Rojas OJ; Ikkala O Biomacromolecules; 2015 Mar; 16(3):1062-71. PubMed ID: 25665073 [TBL] [Abstract][Full Text] [Related]
42. Current Progress in Rheology of Cellulose Nanofibril Suspensions. Nechyporchuk O; Belgacem MN; Pignon F Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523 [TBL] [Abstract][Full Text] [Related]
43. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water. Aulin C; Ahola S; Josefsson P; Nishino T; Hirose Y; Osterberg M; Wågberg L Langmuir; 2009 Jul; 25(13):7675-85. PubMed ID: 19348478 [TBL] [Abstract][Full Text] [Related]
44. Cellulose Nanofibrils and Mechanism of their Mineralization in Biomimetic Synthesis of Hydroxyapatite/Native Bacterial Cellulose Nanocomposites: Molecular Dynamics Simulations. Lukasheva NV; Tolmachev DA Langmuir; 2016 Jan; 32(1):125-34. PubMed ID: 26652774 [TBL] [Abstract][Full Text] [Related]
45. How electrolyte and polyelectrolyte affect the adsorption of the anionic surfactant SDS onto the surface of a cellulose thin film and the structure of the cellulose film. 1. Hydrophobic cellulose. Tucker IM; Petkov JT; Penfold J; Thomas RK Langmuir; 2012 Jul; 28(29):10773-80. PubMed ID: 22735050 [TBL] [Abstract][Full Text] [Related]
46. Factors controlling the deposition of silk fibroin nanofibrils during layer-by-layer assembly. de Moraes MA; Crouzier T; Rubner M; Beppu MM Biomacromolecules; 2015 Jan; 16(1):97-104. PubMed ID: 25469860 [TBL] [Abstract][Full Text] [Related]
47. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration. Sehaqui H; Kulasinski K; Pfenninger N; Zimmermann T; Tingaut P Biomacromolecules; 2017 Jan; 18(1):242-248. PubMed ID: 27958715 [TBL] [Abstract][Full Text] [Related]
48. Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Dong H; Snyder JF; Williams KS; Andzelm JW Biomacromolecules; 2013 Sep; 14(9):3338-45. PubMed ID: 23919541 [TBL] [Abstract][Full Text] [Related]
49. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Saito T; Kuramae R; Wohlert J; Berglund LA; Isogai A Biomacromolecules; 2013 Jan; 14(1):248-53. PubMed ID: 23215584 [TBL] [Abstract][Full Text] [Related]
50. A General Aqueous Silanization Protocol to Introduce Vinyl, Mercapto or Azido Functionalities onto Cellulose Fibers and Nanocelluloses. Beaumont M; Bacher M; Opietnik M; Gindl-Altmutter W; Potthast A; Rosenau T Molecules; 2018 Jun; 23(6):. PubMed ID: 29895798 [TBL] [Abstract][Full Text] [Related]
51. Surface and structure characteristics, self-assembling, and solvent compatibility of holocellulose nanofibrils. Gu J; Hsieh YL ACS Appl Mater Interfaces; 2015 Feb; 7(7):4192-201. PubMed ID: 25635536 [TBL] [Abstract][Full Text] [Related]
52. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(II) and a positively charged dye. Sehaqui H; Perez de Larraya U; Tingaut P; Zimmermann T Soft Matter; 2015 Jul; 11(26):5294-300. PubMed ID: 26052685 [TBL] [Abstract][Full Text] [Related]
53. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Fujisawa S; Ikeuchi T; Takeuchi M; Saito T; Isogai A Biomacromolecules; 2012 Jul; 13(7):2188-94. PubMed ID: 22642863 [TBL] [Abstract][Full Text] [Related]
54. Submicron hierarchy of cellulose nanofibril films with etherified hemicelluloses. Nypelö T; Laine C; Colson J; Henniges U; Tammelin T Carbohydr Polym; 2017 Dec; 177():126-134. PubMed ID: 28962750 [TBL] [Abstract][Full Text] [Related]
55. Cellulose nanofibril based graft conjugated polymer films act as a chemosensor for nitroaromatic. Niu Q; Gao K; Wu W Carbohydr Polym; 2014 Sep; 110():47-52. PubMed ID: 24906727 [TBL] [Abstract][Full Text] [Related]
56. DC magnetron sputtered polyaniline-HCl thin films for chemical sensing applications. Menegazzo N; Boyne D; Bui H; Beebe TP; Booksh KS Anal Chem; 2012 Jul; 84(13):5770-7. PubMed ID: 22702642 [TBL] [Abstract][Full Text] [Related]
57. A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Sulaiman S; Mokhtar MN; Naim MN; Baharuddin AS; Sulaiman A Appl Biochem Biotechnol; 2015 Feb; 175(4):1817-42. PubMed ID: 25427594 [TBL] [Abstract][Full Text] [Related]
58. Bio-inspired multiproperty materials: strong, self-healing, and transparent artificial wood nanostructures. Merindol R; Diabang S; Felix O; Roland T; Gauthier C; Decher G ACS Nano; 2015 Feb; 9(2):1127-36. PubMed ID: 25590696 [TBL] [Abstract][Full Text] [Related]
59. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. Azeredo HM; Mattoso LH; Avena-Bustillos RJ; Filho GC; Munford ML; Wood D; McHugh TH J Food Sci; 2010; 75(1):N1-7. PubMed ID: 20492188 [TBL] [Abstract][Full Text] [Related]