These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 25706742)
1. How structural and physicochemical determinants shape sequence constraints in a functional enzyme. Abriata LA; Palzkill T; Dal Peraro M PLoS One; 2015; 10(2):e0118684. PubMed ID: 25706742 [TBL] [Abstract][Full Text] [Related]
2. Deep sequencing of systematic combinatorial libraries reveals β-lactamase sequence constraints at high resolution. Deng Z; Huang W; Bakkalbasi E; Brown NG; Adamski CJ; Rice K; Muzny D; Gibbs RA; Palzkill T J Mol Biol; 2012 Dec; 424(3-4):150-67. PubMed ID: 23017428 [TBL] [Abstract][Full Text] [Related]
3. Structural bases of stability-function tradeoffs in enzymes. Beadle BM; Shoichet BK J Mol Biol; 2002 Aug; 321(2):285-96. PubMed ID: 12144785 [TBL] [Abstract][Full Text] [Related]
4. Amino acid sequence determinants of beta-lactamase structure and activity. Huang W; Petrosino J; Hirsch M; Shenkin PS; Palzkill T J Mol Biol; 1996 May; 258(4):688-703. PubMed ID: 8637002 [TBL] [Abstract][Full Text] [Related]
5. Sequence-function-stability relationships in proteins from datasets of functionally annotated variants: the case of TEM β-lactamases. Abriata LA; Salverda ML; Tomatis PE FEBS Lett; 2012 Sep; 586(19):3330-5. PubMed ID: 22850115 [TBL] [Abstract][Full Text] [Related]
6. Susceptibility of beta-lactamase to core amino acid substitutions. Petrosino JF; Baker M; Palzkill T Protein Eng; 1999 Sep; 12(9):761-9. PubMed ID: 10506286 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges. Albeck S; Unger R; Schreiber G J Mol Biol; 2000 May; 298(3):503-20. PubMed ID: 10772866 [TBL] [Abstract][Full Text] [Related]
8. Trade-offs between enzyme fitness and solubility illuminated by deep mutational scanning. Klesmith JR; Bacik JP; Wrenbeck EE; Michalczyk R; Whitehead TA Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2265-2270. PubMed ID: 28196882 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of Klebsiella β-Lactamases (SHV-1 and KPC-2) by Avibactam: A Structural Study. Krishnan NP; Nguyen NQ; Papp-Wallace KM; Bonomo RA; van den Akker F PLoS One; 2015; 10(9):e0136813. PubMed ID: 26340563 [TBL] [Abstract][Full Text] [Related]
10. Probing beta-lactamase structure and function using random replacement mutagenesis. Palzkill T; Botstein D Proteins; 1992 Sep; 14(1):29-44. PubMed ID: 1329081 [TBL] [Abstract][Full Text] [Related]
11. Structural Insights into the Inhibition of the Extended-Spectrum β-Lactamase PER-2 by Avibactam. Ruggiero M; Papp-Wallace KM; Brunetti F; Barnes MD; Bonomo RA; Gutkind G; Klinke S; Power P Antimicrob Agents Chemother; 2019 Sep; 63(9):. PubMed ID: 31235626 [TBL] [Abstract][Full Text] [Related]
12. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648 [TBL] [Abstract][Full Text] [Related]
13. Residues Distal to the Active Site Contribute to Enhanced Catalytic Activity of Variant and Hybrid β-Lactamases Derived from CTX-M-14 and CTX-M-15. He D; Chiou J; Zeng Z; Liu L; Chen X; Zeng L; Chan EW; Liu JH; Chen S Antimicrob Agents Chemother; 2015 Oct; 59(10):5976-83. PubMed ID: 26169409 [TBL] [Abstract][Full Text] [Related]
14. Multiple substitutions lead to increased loop flexibility and expanded specificity in Harper TM; June CM; Taracila MA; Bonomo RA; Powers RA; Leonard DA Biochem J; 2018 Jan; 475(1):273-288. PubMed ID: 29229762 [TBL] [Abstract][Full Text] [Related]
15. Natural Variants of the KPC-2 Carbapenemase have Evolved Increased Catalytic Efficiency for Ceftazidime Hydrolysis at the Cost of Enzyme Stability. Mehta SC; Rice K; Palzkill T PLoS Pathog; 2015 Jun; 11(6):e1004949. PubMed ID: 26030609 [TBL] [Abstract][Full Text] [Related]
16. A potent new mode of beta-lactamase inhibition revealed by the 1.7 A X-ray crystallographic structure of the TEM-1-BLIP complex. Strynadka NC; Jensen SE; Alzari PM; James MN Nat Struct Biol; 1996 Mar; 3(3):290-7. PubMed ID: 8605632 [TBL] [Abstract][Full Text] [Related]
17. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations. Sun Z; Mehta SC; Adamski CJ; Gibbs RA; Palzkill T Sci Rep; 2016 Sep; 6():33195. PubMed ID: 27616327 [TBL] [Abstract][Full Text] [Related]
18. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase. Palzkill T; Botstein D J Bacteriol; 1992 Aug; 174(16):5237-43. PubMed ID: 1644749 [TBL] [Abstract][Full Text] [Related]
19. Refined crystal structure of beta-lactamase from Staphylococcus aureus PC1 at 2.0 A resolution. Herzberg O J Mol Biol; 1991 Feb; 217(4):701-19. PubMed ID: 2005620 [TBL] [Abstract][Full Text] [Related]
20. Increased folding stability of TEM-1 beta-lactamase by in vitro selection. Kather I; Jakob RP; Dobbek H; Schmid FX J Mol Biol; 2008 Oct; 383(1):238-51. PubMed ID: 18706424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]