These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25706758)

  • 1. Divinyl sulfone cross-linked cyclodextrin-based polymeric materials: synthesis and applications as sorbents and encapsulating agents.
    Morales-Sanfrutos J; Lopez-Jaramillo FJ; Elremaily MA; Hernández-Mateo F; Santoyo-Gonzalez F
    Molecules; 2015 Feb; 20(3):3565-81. PubMed ID: 25706758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Inclusion Binding Contributions for β-Cyclodextrin Polymers Cross-Linked with Divinyl Sulfone?--A Comment on Morales-Sanfrutos et al. Entitled "Divinyl Sulfone Cross-Linked Cyclodextrin-Based Polymeric Materials: Synthesis and Applications as Sorbents and Encapsulating Agents", Molecules, 2015, 20, 3565-3581.
    Wilson LD; Mohamed MH; McMartin DW
    Molecules; 2016 Jan; 21(1):93. PubMed ID: 26784153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response to Wilson et al. Comments on Lopez-Jaramillo et al. DivinylSulfone Cross-Linked Cyclodextrin-Based Polymeric Materials: Synthesis and Applications as Sorbents and Encapsulating Agents. Molecules, 2015, 20, 3565-3581.
    Lopez-Jaramillo FJ; Hernández-Mateo F; Santoyo-Gonzalez F
    Molecules; 2016 Jan; 21(1):98. PubMed ID: 26784160
    [No Abstract]   [Full Text] [Related]  

  • 4. In vitro and in vivo evaluation of novel cross-linked saccharide based polymers as bile acid sequestrants.
    Lopez-Jaramillo FJ; Giron-Gonzalez MD; Salto-Gonzalez R; Hernandez-Mateo F; Santoyo-Gonzalez F
    Molecules; 2015 Feb; 20(3):3716-29. PubMed ID: 25719741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of Volatile Phenols From Wine Using Crosslinked Cyclodextrin Polymers.
    Dang C; Jiranek V; Taylor DK; Wilkinson KL
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32085581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization, molecular dynamics, and encapsulation ability of β-cyclodextrin polymers crosslinked by polyethylene glycol.
    Kono H; Nakamura T; Hashimoto H; Shimizu Y
    Carbohydr Polym; 2015 Sep; 128():11-23. PubMed ID: 26005135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on adsorption of dyes on beta-cyclodextrin polymer.
    Crini G
    Bioresour Technol; 2003 Nov; 90(2):193-8. PubMed ID: 12895563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of organic pollutants from aqueous solutions by adsorbents prepared from an agroalimentary by-product.
    Delval F; Crini G; Vebrel J
    Bioresour Technol; 2006 Nov; 97(16):2173-81. PubMed ID: 16275061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption and Release of Natural Phenolic Antioxidants in Different Cyclodextrin Polymers.
    García-Padial M; Martínez-Ohárriz MC; Isasi JR; Zornoza A
    J Agric Food Chem; 2017 Jun; 65(24):4905-4910. PubMed ID: 28540726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A crosslinked β-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water.
    Wang Z; Zhang P; Hu F; Zhao Y; Zhu L
    Carbohydr Polym; 2017 Dec; 177():224-231. PubMed ID: 28962763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of direct azo dyes and aromatic amines from aqueous solutions using two beta-cyclodextrin-based polymers.
    Yilmaz E; Memon S; Yilmaz M
    J Hazard Mater; 2010 Feb; 174(1-3):592-7. PubMed ID: 19815342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of 2,4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: characterization, adsorption isotherm, kinetic study, thermodynamics.
    Raoov M; Mohamad S; Abas MR
    J Hazard Mater; 2013 Dec; 263 Pt 2():501-16. PubMed ID: 24231314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of beta-cyclodextrin and starch based polymers for sorption of Congo red from aqueous solutions.
    Ozmen EY; Yilmaz M
    J Hazard Mater; 2007 Sep; 148(1-2):303-10. PubMed ID: 17363149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of beta-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions.
    Ozmen EY; Sezgin M; Yilmaz A; Yilmaz M
    Bioresour Technol; 2008 Feb; 99(3):526-31. PubMed ID: 17350830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer.
    Alsbaiee A; Smith BJ; Xiao L; Ling Y; Helbling DE; Dichtel WR
    Nature; 2016 Jan; 529(7585):190-4. PubMed ID: 26689365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate.
    Deng J; Liu X; Zhang S; Cheng C; Nie C; Zhao C
    Langmuir; 2015 Sep; 31(35):9665-74. PubMed ID: 26301434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Physicochemical Properties of β-Cyclodextrin-Divinyl Sulfone Polymer Carrier-Bile Acid Systems.
    Mohamed MH; Wang C; Peru KM; Headley JV; Wilson LD
    Mol Pharm; 2017 Aug; 14(8):2616-2623. PubMed ID: 28294623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclodextrin-based sorbents for solid phase extraction.
    Gentili A
    J Chromatogr A; 2020 Jan; 1609():460654. PubMed ID: 31679713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption models in cyclodextrin polymers: Langmuir, Freundlich, and a dual-mode approach.
    García-Zubiri IX; González-Gaitano G; Isasi JR
    J Colloid Interface Sci; 2009 Sep; 337(1):11-8. PubMed ID: 19501834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.