BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25706819)

  • 21. Stem cells combined with bone graft substitutes in skeletal tissue engineering.
    Gamie Z; Tran GT; Vyzas G; Korres N; Heliotis M; Mantalaris A; Tsiridis E
    Expert Opin Biol Ther; 2012 Jun; 12(6):713-29. PubMed ID: 22500826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The challenges and promises of blood engineered from human pluripotent stem cells.
    Dravid GG; Crooks GM
    Adv Drug Deliv Rev; 2011 Apr; 63(4-5):331-41. PubMed ID: 21232565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility of trialling cord blood stem cell treatments for cerebral palsy in Australia.
    Crompton KE; Elwood N; Kirkland M; Clark P; Novak I; Reddihough D
    J Paediatr Child Health; 2014 Jul; 50(7):540-4. PubMed ID: 24909743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concise review: stem cells for the treatment of cerebellar-related disorders.
    Erceg S; Moreno-Manzano V; Garita-Hernandez M; Stojkovic M; Bhattacharya SS
    Stem Cells; 2011 Apr; 29(4):564-9. PubMed ID: 21319272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stem cell therapies for treating osteoarthritis: prescient or premature?
    Whitworth DJ; Banks TA
    Vet J; 2014 Dec; 202(3):416-24. PubMed ID: 25457267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of neural progenitor cell transplantation in children with severe cerebral palsy.
    Luan Z; Liu W; Qu S; Du K; He S; Wang Z; Yang Y; Wang C; Gong X
    Cell Transplant; 2012; 21 Suppl 1():S91-8. PubMed ID: 22507684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy.
    Chen G; Wang Y; Xu Z; Fang F; Xu R; Wang Y; Hu X; Fan L; Liu H
    J Transl Med; 2013 Jan; 11():21. PubMed ID: 23351389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy.
    Bhartiya D; Shaikh A; Nagvenkar P; Kasiviswanathan S; Pethe P; Pawani H; Mohanty S; Rao SG; Zaveri K; Hinduja I
    Stem Cells Dev; 2012 Jan; 21(1):1-6. PubMed ID: 21780911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane.
    Lim IJ; Phan TT
    Cell Transplant; 2014; 23(4-5):497-503. PubMed ID: 24636188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stem cell-based treatments for Type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells.
    Godfrey KJ; Mathew B; Bulman JC; Shah O; Clement S; Gallicano GI
    Diabet Med; 2012 Jan; 29(1):14-23. PubMed ID: 21883442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kidney repair using stem cells: myth or reality as a therapeutic option?
    Iwatani H; Imai E
    J Nephrol; 2010; 23(2):143-6. PubMed ID: 20175054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deriving blood stem cells from pluripotent stem cells for research and therapy.
    Daley GQ
    Best Pract Res Clin Haematol; 2014; 27(3-4):293-7. PubMed ID: 25455281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small molecules in stem cell research.
    Schmöle AC; Hübner R; Beller M; Rolfs A; Frech MJ
    Curr Pharm Biotechnol; 2013; 14(1):36-45. PubMed ID: 23092256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural stem cells for spinal cord repair.
    Sandner B; Prang P; Rivera FJ; Aigner L; Blesch A; Weidner N
    Cell Tissue Res; 2012 Jul; 349(1):349-62. PubMed ID: 22388657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular and molecular approaches to motor neuron therapy in amyotrophic lateral sclerosis and spinal muscular atrophy.
    O'Connor DM; Boulis NM
    Neurosci Lett; 2012 Oct; 527(2):78-84. PubMed ID: 22579818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prospects for pluripotent stem cell therapies: into the clinic and back to the bench.
    Grabel L
    J Cell Biochem; 2012 Feb; 113(2):381-7. PubMed ID: 21928325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell transplantation for spinal cord injury focusing on iPSCs.
    Nakamura M; Tsuji O; Nori S; Toyama Y; Okano H
    Expert Opin Biol Ther; 2012 Jul; 12(7):811-21. PubMed ID: 22519931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the efficacy of cord blood mononuclear cells (MNCs) and CD34+ cells for the treatment of neonatal mice with cerebral palsy.
    Li X; Shang Q; Zhang L
    Cell Biochem Biophys; 2014 Dec; 70(3):1539-44. PubMed ID: 25217068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications.
    Forostyak S; Jendelova P; Sykova E
    Biochimie; 2013 Dec; 95(12):2257-70. PubMed ID: 23994163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stem cell self-renewal: lessons from bone marrow, gut and iPS toward clinical applications.
    Staal FJ; Baum C; Cowan C; Dzierzak E; Hacein-Bey-Abina S; Karlsson S; Lapidot T; Lemischka I; Mendez-Ferrer S; Mikkers H; Moore K; Moreno E; Mummery CL; Robin C; Suda T; Van Pel M; Vanden Brink G; Zwaginga JJ; Fibbe WE
    Leukemia; 2011 Jul; 25(7):1095-102. PubMed ID: 21527933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.