These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Ligand Identity-Induced Generation of Enhanced Oxidative Hydrogen Atom Transfer Reactivity for a Cu Quist DA; Ehudin MA; Schaefer AW; Schneider GL; Solomon EI; Karlin KD J Am Chem Soc; 2019 Aug; 141(32):12682-12696. PubMed ID: 31299154 [TBL] [Abstract][Full Text] [Related]
4. Electronic property and reactivity of (hydroperoxo)metal compounds. Nishida Y; Nishino S Z Naturforsch C J Biosci; 2001; 56(1-2):144-53. PubMed ID: 11302205 [TBL] [Abstract][Full Text] [Related]
5. Reactions of copper(II)-H2O2 adducts supported by tridentate bis(2-pyridylmethyl)amine ligands: sensitivity to solvent and variations in ligand substitution. Kunishita A; Scanlon JD; Ishimaru H; Honda K; Ogura T; Suzuki M; Cramer CJ; Itoh S Inorg Chem; 2008 Sep; 47(18):8222-32. PubMed ID: 18698765 [TBL] [Abstract][Full Text] [Related]
6. Sulfur donor atom effects on copper(I)/O(2) chemistry with thioanisole containing tetradentate N(3)S ligand leading to μ-1,2-peroxo-dicopper(II) species. Lee Y; Lee DH; Park GY; Lucas HR; Narducci Sarjeant AA; Kieber-Emmons MT; Vance MA; Milligan AE; Solomon EI; Karlin KD Inorg Chem; 2010 Oct; 49(19):8873-85. PubMed ID: 20822156 [TBL] [Abstract][Full Text] [Related]
7. Coordination chemistry and reactivity of a cupric hydroperoxide species featuring a proximal H-bonding substituent. Kim S; Saracini C; Siegler MA; Drichko N; Karlin KD Inorg Chem; 2012 Dec; 51(23):12603-5. PubMed ID: 23153187 [TBL] [Abstract][Full Text] [Related]
8. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants. Oloo WN; Que L Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131 [TBL] [Abstract][Full Text] [Related]
9. Combined experimental and theoretical approach to understand the reactivity of a mononuclear Cu(II)-hydroperoxo complex in oxygenation reactions. Kamachi T; Lee YM; Nishimi T; Cho J; Yoshizawa K; Nam W J Phys Chem A; 2008 Dec; 112(50):13102-8. PubMed ID: 18991428 [TBL] [Abstract][Full Text] [Related]
10. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Spectroscopic definition of the resting sites and the putative CuIIM-OOH intermediate. Chen P; Bell J; Eipper BA; Solomon EI Biochemistry; 2004 May; 43(19):5735-47. PubMed ID: 15134448 [TBL] [Abstract][Full Text] [Related]
11. How Do Metalloproteins Tame the Fenton Reaction and Utilize •OH Radicals in Constructive Manners? Wang B; Zhang X; Fang W; Rovira C; Shaik S Acc Chem Res; 2022 Aug; 55(16):2280-2290. PubMed ID: 35926175 [TBL] [Abstract][Full Text] [Related]
12. H2O2-reactivity of copper(II) complexes supported by tris[(pyridin-2-yl)methyl]amine ligands with 6-phenyl substituents. Kunishita A; Kubo M; Ishimaru H; Ogura T; Sugimoto H; Itoh S Inorg Chem; 2008 Dec; 47(24):12032-9. PubMed ID: 18998628 [TBL] [Abstract][Full Text] [Related]
13. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site. Chen P; Solomon EI J Am Chem Soc; 2004 Apr; 126(15):4991-5000. PubMed ID: 15080705 [TBL] [Abstract][Full Text] [Related]
14. On the generation of OH(·) radical species from H2O2 by Cu(I) amyloid beta peptide model complexes: a DFT investigation. Prosdocimi T; De Gioia L; Zampella G; Bertini L J Biol Inorg Chem; 2016 Apr; 21(2):197-212. PubMed ID: 26711660 [TBL] [Abstract][Full Text] [Related]
15. Fenton-like Chemistry by a Copper(I) Complex and H Kim B; Brueggemeyer MT; Transue WJ; Park Y; Cho J; Siegler MA; Solomon EI; Karlin KD J Am Chem Soc; 2023 May; 145(21):11735-11744. PubMed ID: 37195014 [TBL] [Abstract][Full Text] [Related]
16. Copper dioxygen adducts: formation of bis(mu-oxo)dicopper(III) versus (mu-1,2)Peroxodicopper(II) complexes with small changes in one pyridyl-ligand substituent. Maiti D; Woertink JS; Narducci Sarjeant AA; Solomon EI; Karlin KD Inorg Chem; 2008 May; 47(9):3787-800. PubMed ID: 18396862 [TBL] [Abstract][Full Text] [Related]
17. Theoretical study of the mechanism of oxoiron(IV) formation from H2O2 and a nonheme iron(II) complex: O-O cleavage involving proton-coupled electron transfer. Hirao H; Li F; Que L; Morokuma K Inorg Chem; 2011 Jul; 50(14):6637-48. PubMed ID: 21678930 [TBL] [Abstract][Full Text] [Related]
18. Ligand effect on reversible conversion between copper(I) and bis(mu-oxo)dicopper(III) complex with a sterically hindered tetradentate tripodal ligand and monooxygenase activity of bis(mu-oxo)dicopper(III) complex. Mizuno M; Hayashi H; Fujinami S; Furutachi H; Nagatomo S; Otake S; Uozumi K; Suzuki M; Kitagawa T Inorg Chem; 2003 Dec; 42(25):8534-44. PubMed ID: 14658910 [TBL] [Abstract][Full Text] [Related]
19. Copper(I) complex O(2)-reactivity with a N(3)S thioether ligand: a copper-dioxygen adduct including sulfur ligation, ligand oxygenation, and comparisons with all nitrogen ligand analogues. Lee DH; Hatcher LQ; Vance MA; Sarangi R; Milligan AE; Sarjeant AA; Incarvito CD; Rheingold AL; Hodgson KO; Hedman B; Solomon EI; Karlin KD Inorg Chem; 2007 Jul; 46(15):6056-68. PubMed ID: 17580938 [TBL] [Abstract][Full Text] [Related]
20. Interaction of an extended series of N-substituted di(2-picolyl)amine derivatives with copper(II). Synthetic, structural, magnetic and solution studies. Antonioli B; Büchner B; Clegg JK; Gloe K; Gloe K; Götzke L; Heine A; Jäger A; Jolliffe KA; Kataeva O; Kataev V; Klingeler R; Krause T; Lindoy LF; Popa A; Seichter W; Wenzel M Dalton Trans; 2009 Jun; (24):4795-805. PubMed ID: 19513491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]