These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

657 related articles for article (PubMed ID: 25706899)

  • 1. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools.
    Shcherbakova DM; Shemetov AA; Kaberniuk AA; Verkhusha VV
    Annu Rev Biochem; 2015; 84():519-50. PubMed ID: 25706899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes.
    Chernov KG; Redchuk TA; Omelina ES; Verkhusha VV
    Chem Rev; 2017 May; 117(9):6423-6446. PubMed ID: 28401765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals.
    Piatkevich KD; Subach FV; Verkhusha VV
    Chem Soc Rev; 2013 Apr; 42(8):3441-52. PubMed ID: 23361376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Infrared Fluorescent Proteins and Their Applications.
    Karasev MM; Stepanenko OV; Rumyantsev KA; Turoverov KK; Verkhusha VV
    Biochemistry (Mosc); 2019 Jan; 84(Suppl 1):S32-S50. PubMed ID: 31213194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered photoreceptors as novel optogenetic tools.
    Möglich A; Moffat K
    Photochem Photobiol Sci; 2010 Oct; 9(10):1286-300. PubMed ID: 20835487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing.
    Oliinyk OS; Shemetov AA; Pletnev S; Shcherbakova DM; Verkhusha VV
    Nat Commun; 2019 Jan; 10(1):279. PubMed ID: 30655515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of Near-Infrared Fluorescent Probes.
    Oliinyk OS; Chernov KG; Verkhusha VV
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28771184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Photosensory Modules of Non-Opsin-Based Optogenetic Actuators.
    Lu X; Shen Y; Campbell RE
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32906617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared fluorescent proteins engineered from bacterial phytochromes.
    Shcherbakova DM; Baloban M; Verkhusha VV
    Curr Opin Chem Biol; 2015 Aug; 27():52-63. PubMed ID: 26115447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales.
    Shcherbakova DM; Stepanenko OV; Turoverov KK; Verkhusha VV
    Trends Biotechnol; 2018 Dec; 36(12):1230-1243. PubMed ID: 30041828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bacterial phytochrome-based optogenetic system controllable with near-infrared light.
    Kaberniuk AA; Shemetov AA; Verkhusha VV
    Nat Methods; 2016 Jul; 13(7):591-7. PubMed ID: 27159085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LOV to BLUF: flavoprotein contributions to the optogenetic toolkit.
    Christie JM; Gawthorne J; Young G; Fraser NJ; Roe AJ
    Mol Plant; 2012 May; 5(3):533-44. PubMed ID: 22431563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications.
    Etzl S; Lindner R; Nelson MD; Winkler A
    J Biol Chem; 2018 Jun; 293(23):9078-9089. PubMed ID: 29695503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Ensemble of Optogenetic Actuators and Dynamic Indicators in Cell Biology.
    Kim J; Heo WD
    Mol Cells; 2018 Sep; 41(9):809-817. PubMed ID: 30157546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoreaction Mechanisms of Flavoprotein Photoreceptors and Their Applications.
    Iwata T; Masuda S
    Adv Exp Med Biol; 2021; 1293():189-206. PubMed ID: 33398814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Oxygen-Voltage (LOV)-sensing Domains: Activation Mechanism and Optogenetic Stimulation.
    Flores-Ibarra A; Maia RNA; Olasz B; Church JR; Gotthard G; Schapiro I; Heberle J; Nogly P
    J Mol Biol; 2024 Mar; 436(5):168356. PubMed ID: 37944792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters.
    Tang K; Beyer HM; Zurbriggen MD; Gärtner W
    Chem Rev; 2021 Dec; 121(24):14906-14956. PubMed ID: 34669383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization and Manipulation of Intracellular Signaling.
    Goto Y; Kondo Y; Aoki K
    Adv Exp Med Biol; 2021; 1293():225-234. PubMed ID: 33398816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering an E. coli Near-Infrared Light Sensor.
    Ong NT; Olson EJ; Tabor JJ
    ACS Synth Biol; 2018 Jan; 7(1):240-248. PubMed ID: 29091422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging.
    Shcherbakova DM; Baloban M; Emelyanov AV; Brenowitz M; Guo P; Verkhusha VV
    Nat Commun; 2016 Aug; 7():12405. PubMed ID: 27539380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.