These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Tolerance of a Knotted Near-Infrared Fluorescent Protein to Random Circular Permutation. Pandey N; Kuypers BE; Nassif B; Thomas EE; Alnahhas RN; Segatori L; Silberg JJ Biochemistry; 2016 Jul; 55(27):3763-73. PubMed ID: 27304983 [TBL] [Abstract][Full Text] [Related]
25. Rewiring Multidomain Protein Switches: Transforming a Fluorescent Zn(2+) Sensor into a Light-Responsive Zn(2+) Binding Protein. Aper SJ; Merkx M ACS Synth Biol; 2016 Jul; 5(7):698-709. PubMed ID: 27031076 [TBL] [Abstract][Full Text] [Related]
26. Optogenetic control of signaling in mammalian cells. Beyer HM; Naumann S; Weber W; Radziwill G Biotechnol J; 2015 Feb; 10(2):273-83. PubMed ID: 25216399 [TBL] [Abstract][Full Text] [Related]
27. Photophysics of the LOV-Based Fluorescent Protein Variant iLOV-Q489K Determined by Simulation and Experiment. Davari MD; Kopka B; Wingen M; Bocola M; Drepper T; Jaeger KE; Schwaneberg U; Krauss U J Phys Chem B; 2016 Apr; 120(13):3344-52. PubMed ID: 26962999 [TBL] [Abstract][Full Text] [Related]
28. Recent advances in the use of genetically encodable optical tools to elicit and monitor signaling events. Lee HN; Mehta S; Zhang J Curr Opin Cell Biol; 2020 Apr; 63():114-124. PubMed ID: 32058267 [TBL] [Abstract][Full Text] [Related]
29. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast. Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF mBio; 2018 Jul; 9(4):. PubMed ID: 30065085 [TBL] [Abstract][Full Text] [Related]
30. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Shu X; Royant A; Lin MZ; Aguilera TA; Lev-Ram V; Steinbach PA; Tsien RY Science; 2009 May; 324(5928):804-7. PubMed ID: 19423828 [TBL] [Abstract][Full Text] [Related]
31. Chromophore binding to two cysteines increases quantum yield of near-infrared fluorescent proteins. Buhrke D; Tavraz NN; Shcherbakova DM; Sauthof L; Moldenhauer M; Vélazquez Escobar F; Verkhusha VV; Hildebrandt P; Friedrich T Sci Rep; 2019 Feb; 9(1):1866. PubMed ID: 30755663 [TBL] [Abstract][Full Text] [Related]
32. Imaging and tracing of intracellular metabolites utilizing genetically encoded fluorescent biosensors. Zhang C; Wei ZH; Ye BC Biotechnol J; 2013 Nov; 8(11):1280-91. PubMed ID: 24591186 [TBL] [Abstract][Full Text] [Related]
33. A knot in the protein structure - probing the near-infrared fluorescent protein iRFP designed from a bacterial phytochrome. Stepanenko OV; Bublikov GS; Stepanenko OV; Shcherbakova DM; Verkhusha VV; Turoverov KK; Kuznetsova IM FEBS J; 2014 May; 281(9):2284-98. PubMed ID: 24628916 [TBL] [Abstract][Full Text] [Related]
34. Engineering Bacteriophytochrome-coupled Photoactivated Adenylyl Cyclases for Enhanced Optogenetic cAMP Modulation. Xu Q; Vogt A; Frechen F; Yi C; Küçükerden M; Ngum N; Sitjà-Roqueta L; Greiner A; Parri R; Masana M; Wenger N; Wachten D; Möglich A J Mol Biol; 2024 Mar; 436(5):168257. PubMed ID: 37657609 [TBL] [Abstract][Full Text] [Related]
35. The design and application of genetically encodable biosensors based on fluorescent proteins. Newman RH; Zhang J Methods Mol Biol; 2014; 1071():1-16. PubMed ID: 24052376 [TBL] [Abstract][Full Text] [Related]
36. DEVELOPMENT OF SINGLE-DOMAIN NEAR-INFRARED FLUORESCENT PROTEIN GAF-FP BASED ON BACTERIAL PHYTOCHROME. Rumyantsev KA; Shcherbakova DM; Zaharova NI; Verhusha VV; Turoverov KK Tsitologiia; 2016; 58(10):744-54. PubMed ID: 30198695 [TBL] [Abstract][Full Text] [Related]
37. Designs and applications of fluorescent protein-based biosensors. Ibraheem A; Campbell RE Curr Opin Chem Biol; 2010 Feb; 14(1):30-6. PubMed ID: 19913453 [TBL] [Abstract][Full Text] [Related]
38. Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids. Niu W; Guo J Mol Biosyst; 2013 Dec; 9(12):2961-70. PubMed ID: 24080788 [TBL] [Abstract][Full Text] [Related]