These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25707106)

  • 21. [Analysis of the dynamics of bioluminescence intensity of luminous bacteria Photobacterium phosphoreum].
    Drozdov AV; Gromozova EN; Gretsky IA
    Biofizika; 2015; 60(2):316-21. PubMed ID: 26016027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Growth and bioluminescence of luminous bacteria under the action of aflatoxin B1 before and after its treatment with nanodiamonds].
    Mogil'naia OA; Puzyr' AP; Bondar' VS
    Prikl Biokhim Mikrobiol; 2010; 46(1):40-4. PubMed ID: 20198915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On-line biosensor for the detection of putative toxicity in water contaminants.
    Eltzov E; Slobodnik V; Ionescu RE; Marks RS
    Talanta; 2015 Jan; 132():583-90. PubMed ID: 25476348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The fabrication and the use of immobilized cells as test organisms in a ferricyanide-based toxicity biosensor.
    Liu C; Xu Y; Han X; Chang X
    Environ Toxicol Chem; 2018 Feb; 37(2):329-335. PubMed ID: 28840945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anammox sludge immobilized in polyvinyl alcohol (PVA) cryogel carriers.
    Magrí A; Vanotti MB; Szögi AA
    Bioresour Technol; 2012 Jun; 114():231-40. PubMed ID: 22520223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient.
    Li X; Dai L; Zhang C; Zeng G; Liu Y; Zhou C; Xu W; Wu Y; Tang X; Liu W; Lan S
    J Hazard Mater; 2017 Feb; 324(Pt B):340-347. PubMed ID: 27832908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co-immobilized microbial biosensor for BOD estimation based on sol-gel derived composite material.
    Jia J; Tang M; Chen X; Qi L; Dong S
    Biosens Bioelectron; 2003 Aug; 18(8):1023-9. PubMed ID: 12782465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct monitoring of pollutants based on an electrochemical biosensor with novel peroxidase (POX1B).
    El Ichi S; Marzouki MN; Korri-Youssoufi H
    Biosens Bioelectron; 2009 Jun; 24(10):3084-90. PubMed ID: 19423328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A High Sensitivity Impedimetric Biosensor Using the Tannin From Quercusmacrolepis as Biorecognition Element for Heavy Metals Detection.
    Khedimallah N; Zazoua A; Sbartai A; Jaffrezic-Renault N
    IEEE Trans Nanobioscience; 2015 Oct; 14(7):694-9. PubMed ID: 26441425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Whole-cell bacterial biosensors for rapid and effective monitoring of heavy metals and inorganic pollutants in wastewater.
    Olaniran AO; Hiralal L; Pillay B
    J Environ Monit; 2011 Oct; 13(10):2914-20. PubMed ID: 21904738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of porous poly (vinyl alcohol)/hydroxyapatite composite cryogels and cryogels immobilized on poly (vinyl alcohol) and polyurethane foams for removal of cadmium.
    Wang X; Min BG
    J Hazard Mater; 2008 Aug; 156(1-3):381-6. PubMed ID: 18262348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilization of hydrocarbon-oxidizing bacteria in poly(vinyl alcohol) cryogels hydrophobized using a biosurfactant.
    Kuyukina MS; Ivshina IB; Gavrin AY; Podorozhko EA; Lozinsky VI; Jeffree CE; Philp JC
    J Microbiol Methods; 2006 Jun; 65(3):596-603. PubMed ID: 16316701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smartphone-Based Whole-Cell Biosensor Platform Utilizing an Immobilization Approach on a Filter Membrane Disk for the Monitoring of Water Toxicants.
    Ma J; Harpaz D; Liu Y; Eltzov E
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of sulfur-oxidizing bacteria as recognition elements in hydrogen sulfide biosensing system.
    Janfada B; Yazdian F; Amoabediny G; Rahaie M
    Biotechnol Appl Biochem; 2015; 62(3):349-56. PubMed ID: 25158614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasibility of using a translucid inorganic hydrogel to build a biosensor using immobilized algal cells.
    Durrieu C; Ferro Y; Perullini M; Gosset A; Jobbágy M; Bilmes SA
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):9-13. PubMed ID: 26201654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of river water by bioluminescent biotests.
    Kuznetsov AM; Rodicheva EK; Medvedeva SE
    Luminescence; 1999; 14(5):263-5. PubMed ID: 10512990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new HPTLC platformed luminescent biosensor system for facile screening of captan residue in fruits.
    Chen Y; Huang C; Hellmann B; Jin Z; Xu X; Xiao G
    Food Chem; 2020 Mar; 309():125691. PubMed ID: 31679853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photosystem II-based biosensors for the detection of pollutants.
    Giardi MT; Koblízek M; Masojídek J
    Biosens Bioelectron; 2001 Dec; 16(9-12):1027-33. PubMed ID: 11679285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid and onsite BOD sensing system using luminous bacterial cells-immobilized chip.
    Sakaguchi T; Morioka Y; Yamasaki M; Iwanaga J; Beppu K; Maeda H; Morita Y; Tamiya E
    Biosens Bioelectron; 2007 Feb; 22(7):1345-50. PubMed ID: 16846732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution.
    Moyo M; Okonkwo JO; Agyei NM
    Enzyme Microb Technol; 2014 Mar; 56():28-34. PubMed ID: 24564899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.