These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25707319)

  • 1. Determination of concentration and activity of immobilized enzymes.
    Singh P; Morris H; Tivanski AV; Kohen A
    Anal Biochem; 2015 Sep; 484():169-72. PubMed ID: 25707319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled enzymatic monolayer directly bound to a gold surface: activity and molecular recognition force spectroscopy studies.
    Ditzler LR; Sen A; Gannon MJ; Kohen A; Tivanski AV
    J Am Chem Soc; 2011 Aug; 133(34):13284-7. PubMed ID: 21809877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic Analysis of Enzymes Immobilized in Porous Film Arrays.
    Neira HD; Herr AE
    Anal Chem; 2017 Oct; 89(19):10311-10320. PubMed ID: 28858525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of immobilized and native Escherichia coli dihydrofolate reductase by quasielastic neutron scattering.
    Tehei M; Smith JC; Monk C; Ollivier J; Oettl M; Kurkal V; Finney JL; Daniel RM
    Biophys J; 2006 Feb; 90(3):1090-7. PubMed ID: 16258053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic Measurements for Enzyme Immobilization.
    Cooney MJ
    Methods Mol Biol; 2017; 1504():215-232. PubMed ID: 27770425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of ligand exchange kinetics via active-site trapping with an antibody fragment.
    Oyen D; Steyaert J; Barlow JN
    Biochemistry; 2014 Apr; 53(12):1879-81. PubMed ID: 24617671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.
    Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN
    Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.
    McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlating Structural and Functional Heterogeneity of Immobilized Enzymes.
    Kienle DF; Falatach RM; Kaar JL; Schwartz DK
    ACS Nano; 2018 Aug; 12(8):8091-8103. PubMed ID: 30067333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Enhancement of Enzyme Performance and Resilience via Orthogonal Peptide-Protein Chemistry Enabled Multilayer Construction.
    Zhang XJ; Wang XW; Sun JX; Su C; Yang S; Zhang WB
    Biomacromolecules; 2018 Jul; 19(7):2700-2707. PubMed ID: 29768002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathione transferases immobilized on nanoporous alumina: flow system kinetics, screening, and stability.
    Kjellander M; Mazari AM; Boman M; Mannervik B; Johansson G
    Anal Biochem; 2014 Feb; 446():59-63. PubMed ID: 24157647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of inhibition of wt-dihydrofolate reductase from E. coli by tea epigallocatechin-gallate.
    Spina M; Cuccioloni M; Mozzicafreddo M; Montecchia F; Pucciarelli S; Eleuteri AM; Fioretti E; Angeletti M
    Proteins; 2008 Jul; 72(1):240-51. PubMed ID: 18214969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of conformational changes in an immobilized protein using surface plasmon resonance.
    Sota H; Hasegawa Y; Iwakura M
    Anal Chem; 1998 May; 70(10):2019-24. PubMed ID: 9608841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational selection and induced changes along the catalytic cycle of Escherichia coli dihydrofolate reductase.
    Weikl TR; Boehr DD
    Proteins; 2012 Oct; 80(10):2369-83. PubMed ID: 22641560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Searching sequence space: two different approaches to dihydrofolate reductase catalysis.
    Howell EE
    Chembiochem; 2005 Apr; 6(4):590-600. PubMed ID: 15812782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of dihydrofolate reductase by engineered cysteine residue attached to its C-terminal end.
    Iwakura M; Kokubu T
    J Biochem; 1993 Sep; 114(3):339-43. PubMed ID: 8282723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects.
    Scott AF; Luk LYP; Allemann RK
    Methods Enzymol; 2017; 596():23-41. PubMed ID: 28911773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface orientation control of site-specifically immobilized nitro-reductase (NfsB).
    Shen L; Schroeder M; Ogorzalek TL; Yang P; Wu FG; Marsh EN; Chen Z
    Langmuir; 2014 May; 30(20):5930-8. PubMed ID: 24807676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E.
    Ohmae E; Miyashita Y; Tate S; Gekko K; Kitazawa S; Kitahara R; Kuwajima K
    Biochim Biophys Acta; 2013 Dec; 1834(12):2782-94. PubMed ID: 24140567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.