BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25707595)

  • 1. Quantification of Shear Deformations and Corresponding Stresses in the Biaxially Tested Human Myocardium.
    Sommer G; Haspinger DCh; Andrä M; Sacherer M; Viertler C; Regitnig P; Holzapfel GA
    Ann Biomed Eng; 2015 Oct; 43(10):2334-48. PubMed ID: 25707595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical properties and microstructure of human ventricular myocardium.
    Sommer G; Schriefl AJ; Andrä M; Sacherer M; Viertler C; Wolinski H; Holzapfel GA
    Acta Biomater; 2015 Sep; 24():172-92. PubMed ID: 26141152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear properties of passive ventricular myocardium.
    Dokos S; Smaill BH; Young AA; LeGrice IJ
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2650-9. PubMed ID: 12427603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads.
    Little JP; Pearcy MJ; Tevelen G; Evans JH; Pettet G; Adam CJ
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):146-57. PubMed ID: 20129414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations.
    Zhang W; Feng Y; Lee CH; Billiar KL; Sacks MS
    J Biomech Eng; 2015 Jun; 137(6):064501. PubMed ID: 25429606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the correct interpretation of measured force and calculation of material stress in biaxial tests.
    Nolan DR; McGarry JP
    J Mech Behav Biomed Mater; 2016 Jan; 53():187-199. PubMed ID: 26327453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical stresses associated with flattening of human femoropopliteal artery specimens during planar biaxial testing and their effects on the calculated physiologic stress-stretch state.
    Jadidi M; Desyatova A; MacTaggart J; Kamenskiy A
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1591-1605. PubMed ID: 31069592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocardial material parameter estimation: a comparison of invariant based orthotropic constitutive equations.
    Schmid H; Wang YK; Ashton J; Ehret AE; Krittian SB; Nash MP; Hunter PJ
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):283-95. PubMed ID: 19089682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epicardial suction: a new approach to mechanical testing of the passive ventricular wall.
    Okamoto RJ; Moulton MJ; Peterson SJ; Li D; Pasque MK; Guccione JM
    J Biomech Eng; 2000 Oct; 122(5):479-87. PubMed ID: 11091948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for planar biaxial mechanical testing that includes in-plane shear.
    Sacks MS
    J Biomech Eng; 1999 Oct; 121(5):551-5. PubMed ID: 10529924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of stress in cracked fibrous tissue specimens with varied crack location, loading, and orientation using finite element analysis.
    Peloquin JM; Elliott DM
    J Mech Behav Biomed Mater; 2016 Apr; 57():260-8. PubMed ID: 26741533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive modelling of passive myocardium: a structurally based framework for material characterization.
    Holzapfel GA; Ogden RW
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3445-75. PubMed ID: 19657007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear.
    Sun W; Sacks MS; Sellaro TL; Slaughter WS; Scott MJ
    J Biomech Eng; 2003 Jun; 125(3):372-80. PubMed ID: 12929242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive material properties of intact ventricular myocardium determined from a cylindrical model.
    Guccione JM; McCulloch AD; Waldman LK
    J Biomech Eng; 1991 Feb; 113(1):42-55. PubMed ID: 2020175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation.
    Ning X; Zhu Q; Lanir Y; Margulies SS
    J Biomech Eng; 2006 Dec; 128(6):925-33. PubMed ID: 17154695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical experiments on excised myocardium: theoretical considerations.
    Humphrey JD; Yin FC
    J Biomech; 1989; 22(4):377-83. PubMed ID: 2745472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment.
    Gültekin O; Sommer G; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1647-64. PubMed ID: 27146848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial material parameter estimation-a comparative study for simple shear.
    Schmid H; Nash MP; Young AA; Hunter PJ
    J Biomech Eng; 2006 Oct; 128(5):742-50. PubMed ID: 16995761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.