These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 25707691)
1. Evaluation of the in vitro α-glucosidase inhibitory activity of green tea polyphenols and different tea types. Yang X; Kong F J Sci Food Agric; 2016 Feb; 96(3):777-82. PubMed ID: 25707691 [TBL] [Abstract][Full Text] [Related]
2. Selected tea and tea pomace extracts inhibit intestinal α-glucosidase activity in vitro and postprandial hyperglycemia in vivo. Oh J; Jo SH; Kim JS; Ha KS; Lee JY; Choi HY; Yu SY; Kwon YI; Kim YC Int J Mol Sci; 2015 Apr; 16(4):8811-25. PubMed ID: 25906471 [TBL] [Abstract][Full Text] [Related]
3. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370 [TBL] [Abstract][Full Text] [Related]
4. Roasting improves the hypoglycemic effects of a large-leaf yellow tea infusion by enhancing the levels of epimerized catechins that inhibit α-glucosidase. Zhou J; Zhang L; Meng Q; Wang Y; Long P; Ho CT; Cui C; Cao L; Li D; Wan X Food Funct; 2018 Oct; 9(10):5162-5168. PubMed ID: 30246823 [TBL] [Abstract][Full Text] [Related]
5. The enhanced inhibition of water extract of black tea under baking treatment on α-amylase and α-glucosidase. Tong DP; Zhu KX; Guo XN; Peng W; Zhou HM Int J Biol Macromol; 2018 Feb; 107(Pt A):129-136. PubMed ID: 28863898 [TBL] [Abstract][Full Text] [Related]
6. Anti-hyperglycemia properties of Tea (Camellia sinensis) bioactives using in vitro assay models and influence of extraction time. Ankolekar C; Terry T; Johnson K; Johnson D; Barbosa AC; Shetty K J Med Food; 2011 Oct; 14(10):1190-7. PubMed ID: 21859352 [TBL] [Abstract][Full Text] [Related]
7. Combined effects of green tea extracts, green tea polyphenols or epigallocatechin gallate with acarbose on inhibition against α-amylase and α-glucosidase in vitro. Gao J; Xu P; Wang Y; Wang Y; Hochstetter D Molecules; 2013 Sep; 18(9):11614-23. PubMed ID: 24051476 [TBL] [Abstract][Full Text] [Related]
8. Chemical compositions and bioactivities of crude polysaccharides from tea leaves beyond their useful date. Xiao J; Huo J; Jiang H; Yang F Int J Biol Macromol; 2011 Dec; 49(5):1143-51. PubMed ID: 21946077 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method. Dong J; Xu X; Liang Y; Head R; Bennett L Food Funct; 2011 Jun; 2(6):310-9. PubMed ID: 21779569 [TBL] [Abstract][Full Text] [Related]
10. Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars. Kerio LC; Wachira FN; Wanyoko JK; Rotich MK Food Chem; 2013 Feb; 136(3-4):1405-13. PubMed ID: 23194541 [TBL] [Abstract][Full Text] [Related]
11. Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake. Liu S; Ai Z; Qu F; Chen Y; Ni D Food Chem; 2017 Nov; 234():168-173. PubMed ID: 28551221 [TBL] [Abstract][Full Text] [Related]
12. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: analysis with interaction indexes and isobolograms. Enko J; Gliszczyńska-Świgło A Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(8):1234-42. PubMed ID: 26035225 [TBL] [Abstract][Full Text] [Related]
13. Polyphenol- and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: a randomised, controlled, single-blind, cross-over intervention. Nyambe-Silavwe H; Williamson G Br J Nutr; 2016 Aug; 116(3):443-50. PubMed ID: 27278405 [TBL] [Abstract][Full Text] [Related]
14. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. Chen H; Qu Z; Fu L; Dong P; Zhang X J Food Sci; 2009 Aug; 74(6):C469-74. PubMed ID: 19723184 [TBL] [Abstract][Full Text] [Related]
15. Chain-breaking antioxidant activity and cyclic voltammetry characterization of polyphenols in a range of green, oolong, and black teas. Roginsky V; Barsukova T; Hsu CF; Kilmartin PA J Agric Food Chem; 2003 Sep; 51(19):5798-802. PubMed ID: 12952436 [TBL] [Abstract][Full Text] [Related]
16. Ultrafiltration isolation, physicochemical characterization, and antidiabetic activities analysis of polysaccharides from green tea, oolong tea, and black tea. Xu L; Chen Y; Chen Z; Gao X; Wang C; Panichayupakaranant P; Chen H J Food Sci; 2020 Nov; 85(11):4025-4032. PubMed ID: 33037621 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of α-glucosidases by tea polyphenols in rat intestinal extract and Caco-2 cells grown on Transwell. Kan L; Capuano E; Fogliano V; Verkerk R; Mes JJ; Tomassen MMM; Oliviero T Food Chem; 2021 Nov; 361():130047. PubMed ID: 34029903 [TBL] [Abstract][Full Text] [Related]
18. White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles. Unachukwu UJ; Ahmed S; Kavalier A; Lyles JT; Kennelly EJ J Food Sci; 2010 Aug; 75(6):C541-8. PubMed ID: 20722909 [TBL] [Abstract][Full Text] [Related]
19. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. Nakai M; Fukui Y; Asami S; Toyoda-Ono Y; Iwashita T; Shibata H; Mitsunaga T; Hashimoto F; Kiso Y J Agric Food Chem; 2005 Jun; 53(11):4593-8. PubMed ID: 15913331 [TBL] [Abstract][Full Text] [Related]
20. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. Lin YS; Tsai YJ; Tsay JS; Lin JK J Agric Food Chem; 2003 Mar; 51(7):1864-73. PubMed ID: 12643643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]